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Abstract

This paper introduces ambiguous transfers to study the problem of full surplus

extraction and (partial) implementation of efficient allocations. We show that full sur-

plus extraction can be guaranteed via a mechanism with ambiguous transfers if and

only if the Beliefs Determine Preferences (BDP) property is satisfied by all agents. We

also show that any efficient allocation rule is implementable via an interim individually

rational and ex-post budget-balanced mechanism with ambiguous transfers if and only

if the BDP property holds for all agents. This property is generic in a type space with

at least two agents. It is weaker than the necessary and sufficient conditions for full

surplus extraction and implementation via Bayesian mechanisms. Therefore, ambigu-

ous transfers may provide a solution for situations where Bayesian mechanism design is

impossible. In particular, with ambiguous transfers, efficient allocations become imple-

mentable generically in two-agent problems, which contrasts the impossibility results

in the literature.

Keywords: Full surplus extraction; Bayesian (partial) implementation; Ambigu-

ous transfers; Correlated beliefs; Individual rationality; Budget balance
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1 Introduction

One could perceive ambiguity in many forms of transactions. For instance, Priceline Ex-

press Deals offer travelers a known price for a hotel stay, but the exact name of the hotel

remains unknown until the completion of payment. Another example is the scratch-and-save

promotion run by some stores: a consumer receives a scratch card at the time of check out,

which reveals a discount, and thus the cost of her purchase and even its distribution are

mysterious when she decides to buy. As a third example, eBay allows sellers of auction-style

listings to set hidden reserve prices. In all the above mechanisms, the ambiguity about the

allocation or (and) transfer rule are generated by the mechanism designers. It is reasonable

to imply that the mechanism designers engineer ambiguity to benefit themselves. To know

how far such a practice can go, we would like to ask the specific question that if introducing

ambiguity can help the mechanism designers achieve the first-best outcomes.

This paper introduces ambiguous transfers to study two problems: full surplus extraction

and implementation of an efficient allocation rule via an interim individually rational and

ex-post budget-balanced mechanism. In both problems, the mechanism designer informs

agents of the exact allocation rule, but the communication is ambiguous so that agents only

know a set of potential transfer rules. Agents are assumed to be ambiguity-averse and thus

make decisions based on the worst-case transfer rule.

In this paper, the Beliefs Determine Preferences (BDP) property is the key condition for

first-best mechanism design with ambiguous transfers. The property, introduced by Neeman

(2004), requires that an agent with different types should have distinct beliefs. We show that

full surplus extraction can be guaranteed via a mechanism with ambiguous transfers if and

only if the BDP property is satisfied by all agents. In addition, any efficient allocation rule is

implementable via an interim individually rational and ex-post budget-balanced mechanism

with ambiguous transfers if and only if the BDP property holds for all agents. These two

are the primary results of this paper. As an extension, we show any efficient allocation rule

under a private value environment is implementable if and only if at most one agent does not

satisfy the BDP property. Then, we investigate an environment without a common prior and

establish sufficient conditions for individually rational and budget-balanced implementation

of any efficient allocation rule under private value environments.

Our key condition, the BDP property, is weaker than Crémer and McLean (1988)’s Con-

vex Independence condition, which is necessary and sufficient for full surplus extraction via

a Bayesian mechanism. Convex Independence, together with the Identifiability condition

established by Kosenok and Severinov (2008), is necessary and sufficient for implementing

any efficient allocation rule via an individually rational and budget-balanced Bayesian im-
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plementation. In a type space with fixed finite dimension and more than one agent, the BDP

property holds generically. Without restricting the dimension, models satisfying the BDP

property are topologically generic, as is shown by Chen and Xiong (2011).

We summarize several advantages of the BDP property below. Firstly, compared to

Convex Independence, the BDP property imposes weaker restrictions on the cardinality

of the type space. For example, in a two agent problem, where one agent has two types

and the other has three, Convex Independence fails for one agent for sure, but the BDP

property holds for both generically. Secondly, the Identifiability condition is relaxed, and

hence so is its associated restriction on cardinality of the type space.1 For example, in

a three-agent problem where each agent has two types, the Identifiability property fails

with positive probability, but the BDP property holds generically. Thirdly, the Bayesian

mechanism design literature documents several negative results on individually rational and

budget-balanced implementation with two agents, but the BDP property and ambiguous

transfers provide a generic solution to such problems, which are fundamental and important

in view of the many bilateral trades and bargains occurring every day.2 Fourthly, the BDP

property is very easy to check. To verify this property for an agent, we only need to make

sure that she never has identical beliefs under different types.

In this paper, we let the mechanism designer announce a fixed efficient allocation rule and

introduce ambiguity in transfer rules only. To see why we impose this restriction, notice that

the allocation rule in an implementation problem is exogenous, and thus, it is natural for

the mechanism designer to commit to that particular allocation rule. When the mechanism

designer aims to extract full surplus instead, she endogenously chooses an ex-post efficient

allocation rule, which is often unique in a finite-type framework. Hence, we do not give the

mechanism designer the freedom to use ambiguous allocation rules in full surplus extraction

either. In a related paper, Di Tillio et al. (2017) study how second-best outcomes under

independent beliefs could be improved if the mechanism designer introduces ambiguity in

both allocation and transfer rules. We discuss more on the relationship with that paper in

Section 1.1. As a by-product, the restriction on no ambiguity in allocation rules also helps

us to clarify the scope and limitation of ambiguous transfers.

The paper proceeds as follows. We review the literature in Section 1.1 and introduce

1For the first two points, see Section 5 for more details.
2For example, Myerson and Satterthwaite (1983) demonstrate the impossibility of efficient bilateral trad-

ing with independent information. Matsushima (2007) provides a sufficient condition under which indi-

vidually rational and budget-balanced implementation with two agents cannot be achieved. Kosenok and

Severinov (2008)’s necessary and sufficient conditions never hold simultaneously in two-agent environments,

which could also be interpreted as an impossibility result even if correlated information is allowed.
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the environment in Section 2. After providing an example on how ambiguous transfers work

for full surplus extraction and implementation in Section 3, we formalize the mechanism

with ambiguous transfers in Section 4. The BDP property is introduced and shown to be

necessary and sufficient for full surplus extraction and implementation in Section 5. Section

6 extends our primary results along several directions. The Appendix collects all proofs and

some examples.

1.1 Literature review

1.1.1 Efficient mechanisms with independent information

How to implement efficient allocations is a classical topic in mechanism design theory that

has been widely studied in situations such as public good provision and bilateral trading.

Individual rationality is a natural requirement as agents can opt out of the mechanism. As a

resource constraint, budget balance requires that agents should finance within themselves for

the efficient outcome rather than rely on an outside budget-breaker. When either individual

rationality or budget balance is required, the literature provides positive results for efficient

mechanism design in private value environments. For instance, the VCG mechanism (Vick-

rey (1961), Clarke (1971), and Groves (1973)) is ex-post individually rational. The AGV

mechanism (d’Aspremont and Gérard-Varet (1979)) is ex-post budget-balanced.

However, the literature documents a tension between efficiency, individual rationality, and

budget balance, when agents have independent information. For example, in a private value

bilateral trading framework, Myerson and Satterthwaite (1983) prove that it is impossible to

achieve efficiency with an individually rational and budget-balanced mechanism in general.

With multi-dimensional and interdependent values, Dasgupta and Maskin (2000) and Jehiel

and Moldovanu (2001) prove that efficient allocations are generically non-implementable.

One goal of the current paper is to design an efficient, individually rational, and budget-

balanced mechanism. But instead of assuming independent information, we show that cor-

relation is necessary and sufficient to achieve the goal.

1.1.2 Mechanism design with correlated information

With correlated information, first-best mechanism design becomes possible. Crémer and

McLean (1985, 1988) establish two conditions to fully extract agents’ surplus in private

value auctions, among which the Convex Independence condition is necessary and sufficient

for Bayesian mechanism design. In a fixed finite dimension type space, if there are at least

two agents, and if no agent has more types than all others’ type profiles, the condition is
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satisfied generically. Without restricting the dimension, different notions of genericity are

adopted in the literature and various conclusions on genericity of Convex Independence are

made (e.g., Neeman (2004), Heifetz and Neeman (2006), Barelli (2009), Chen and Xiong

(2011, 2013)). With continuous types, McAfee and Reny (1992) show that approximate

full surplus extraction can be achieved. In addition, the recent papers of Liu (2014) and

Noda (2015) prove an intertemporal variant of Convex Independence is sufficient for first-

best mechanism design in dynamic environments. In Sections 5.1, by introducing ambiguous

transfers, the current paper shows that the weaker condition, the BDP property, becomes

necessary and sufficient for full surplus extraction.

Unlike full surplus extraction, in a problem of (partial) implementation, the allocation

rule is exogenously given, and the mechanism designer constructs incentive compatible trans-

fers to achieve the desired outcome. Under the context of exchange economies, McLean and

Postlewaite (2002, 2003a,b) propose the notion of informational size and prove the existence

of incentive compatible and approximately efficient outcomes when agents have small infor-

mational size.3 Under a mechanism design framework, McLean and Postlewaite (2004, 2015)

implement efficient allocation rules via individually rational mechanisms under the BDP

property. In their mechanisms, small outside money is needed even when agents are infor-

mationally small. We do not address the issue of informational size, but our mechanism for

implementation in Section 5 is exactly efficient, individually rational, and budget-balanced.

A few papers study budget-balanced mechanisms with or without independent informa-

tion, including Matsushima (1991), Aoyagi (1998), Chung (1999), d’Aspremont et al. (2004),

etc.4 Among these works, d’Aspremont et al. (2004) propose necessary and sufficient condi-

tions for budget-balanced mechanisms. All these papers do not require individual rationality.

Also, they assume that there are at least three agents. Actually, d’Aspremont et al. (2004)

indicate an impossibility result in implementing efficient allocations via budget-balanced

mechanisms with two agents under correlated information. However, we do require individ-

ual rationality, and our mechanism with ambiguous transfers works for environments with

at least two agents.

Matsushima (2007) and Kosenok and Severinov (2008) design individually rational and

budget-balanced mechanisms. The latter work proposes the Identifiability condition, which

along with the Convex Independence condition, is necessary and sufficient for implementing

any ex-ante socially rational allocation rule via an individually rational and budget-balanced

3For related results, see also Sun and Yannelis (2007, 2008).
4 Matsushima (1991), Chung (1999), and d’Aspremont et al. (2004) only consider private value utility

functions. In this case, incentive compatibility can be achieved via a VCG mechanism, rather than via

information correlation. Thus, they allow for independent information.
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Bayesian mechanism. The Identifiability condition is generic with at least three agents

and under some restrictions on the dimension of agents’ types, but Convex Independence

and Identifiability never hold simultaneously in a two-agent setting. Thus Kosenok and

Severinov (2008) imply an impossibility result in efficient, individually rational, and budget-

balanced two-agent mechanism design. In our paper, the BDP property is weaker than

Convex Independence, and we do not need Identifiability. Moreover, the BDP property

holds generically with at least two agents, and thus we make the impossible possible for

two-agent implementation problems.

1.1.3 Mechanism design under ambiguity

In the growing literature on mechanism design with ambiguity-averse agents, most of the

works assume exogenously that agents hold ambiguous beliefs of others’ types. For exam-

ple, Bose et al. (2006) prove that when agents are more ambiguity-averse than the auc-

tioneer, a full insurance transfer rule is optimal in a private value auction. Bose and Daripa

(2009) achieve almost full surplus extraction in a dynamic auction by exploiting the dynamic

inconsistency of prior-by-prior updating. Bodoh-Creed (2012) characterizes the revenue-

maximizing mechanism with a payoff equivalence theorem. De Castro and Yannelis (2009)

prove that all Pareto efficient allocations are incentive compatible when agents’ ambigu-

ous beliefs are unrestricted. Accordingly, De Castro et al. (2017a,b) implement all Pareto

efficient allocations. Under the private value assumption, Wolitzky (2016) establishes a

necessary condition for the existence of an efficient, individually rational, and weak budget-

balanced mechanism. In an environment with multi-dimensional and interdependent values,

Song (2016) quantifies the amount of ambiguity that is necessary and sometimes sufficient

for efficient mechanism design. We do not assume exogenous ambiguity in agents’ beliefs,

which is the biggest difference between the above papers and our work.

Bose and Renou (2014) and Di Tillio et al. (2017) contrast the above works in that

ambiguity is endogenously engineered by the mechanism designer. Before the allocation

stage, Bose and Renou (2014) let the mechanism designer communicate with agents via an

ambiguous device, which generates ambiguous beliefs. Their paper characterizes social choice

functions that are implementable under this method. Our paper is different from Bose and

Renou (2014), as we do not need multiple beliefs.

Di Tillio et al. (2017) consider the problem of revenue maximization in a private value

and independent belief environment. The seller commits to a simple mechanism, i.e., an

allocation and transfer rule, but informs agents of a set of simple mechanisms. As all

the simple mechanisms generate the same expected revenue (imposed by the Consistency

6



condition), agents do not know the exact rule and thus make decisions based on the worst-

case scenario. Compared to the standard Bayesian mechanism, their ambiguous approach

yields a higher expected revenue.

In the current paper, ambiguity is engineered in a similar way to Di Tillio et al. (2017).

However, instead of studying how ambiguous mechanisms improve second-best revenues

under independent beliefs, the current paper studies when the first-best outcome in surplus

extraction or implementation can be achieved without restricting attention to independent

beliefs. As mentioned before, we fix an efficient allocation rule and only allow for ambiguity in

transfer rules, but in Di Tillio et al. (2017)’s mechanism both allocation and transfer rules are

ambiguous. This restriction is compatible with Di Tillio et al. (2017)’s Consistency condition,

because each transfer rule satisfies interim individual rationality and extracts full surplus (or

is interim individually rational and ex-post budget-balanced in the implementation problem).

To see that allowing for ambiguity in allocation rules may result in a failure of full surplus

extraction or implementation, we consider a finite-type environment where the total surplus

is maximized by a unique allocation rule for example. If it is common knowledge that the

mechanism designer’s objective is to extract full surplus or implement efficient outcomes, any

other allocation with lower surplus levels are non-credible to the agents, and thus should not

be used in the mechanism. In Di Tillio et al. (2017)’s framework with independent beliefs

and finitely many types, ambiguity in allocation rules plays an important role to achieve

incentive compatibility, and therefore, full surplus extraction cannot be achieved. But with

continuous types, their approach works for full surplus extraction, and thus we focus on

environments with finitely many types.

The essential factor that enables us to achieve the first-best outcome in finite type envi-

ronment is the correlation in agents’ beliefs. In fact, we show correlated beliefs are necessary

and sufficient for full surplus extraction and implementing efficient allocations. Correlation

also results in different constructions of mechanisms between Di Tillio et al. (2017) and the

current paper: in the main section of our paper (Section 5.2), we only need two transfer

rules, while the number of simple mechanisms in their paper depends on the cardinality of

the type space.

2 Asymmetric information environment

We study the asymmetric information environment given by

E = {I, A, (Θi, ui)
N
i=1, p},

where
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• I = {1, ..., N} is the finite set of agents; assume N ≥ 2;

• A is the set of feasible outcomes;

• let θi ∈ Θi be agent i’s type; denote ×i∈IΘi by Θ, ×j∈I, j 6=iΘj by Θ−i, and ×k∈I, k 6=i,jΘk

by Θ−i,j; let |Θi| represent the cardinality of Θi, where we assume 2 ≤ |Θi| <∞;5

• each agent i has a quasi-linear utility function ui(a, θ) + b, where a ∈ A is a feasible

outcome, b ∈ R is a monetary transfer, and θ ∈ Θ is the realized type profile;

• p is a probability distribution on Θ, representing agents’ common prior; let p(θi) and

p(θi, θj) represent the marginal distribution of p on θi and (θi, θj) respectively; when agent

i has type θi, her belief is derived from Bayesian updating p, i.e., others have type profile

θ−i ∈ Θ−i with probability pi(θ−i|θi); for agent j 6= i and type θj we let pi(θj|θi) denote

the marginal belief of pi(·|θi) ≡ (pi(θ−i|θi))θ−i∈Θ−i on type θj.

The environment E is common knowledge between the mechanism designer and the

agents.

We impose the following assumption throughout the paper unless otherwise specified.

Assumption 2.1: For all i, j ∈ I with i 6= j, and (θi, θj) ∈ Θi ×Θj, assume p(θi, θj) > 0.

An allocation rule q : Θ→ A is a plan to assign a feasible outcome contingent on agents’

realized type profile. An allocation rule q is said to be ex-post efficient if
∑
i∈I

ui
(
q(θ), θ

)
≥∑

i∈I

ui
(
q′(θ), θ

)
for all q′ : Θ→ A and θ ∈ Θ.

3 A motivating example

In this example, we look at a common prior p such that the standard Bayesian mechanism

design approach can neither guarantee full surplus extraction nor implementation of an effi-

cient allocation via an interim individually rational and ex-post budget-balanced mechanism.

However, when the mechanism designer is allowed to be ambiguous about which transfer rule

she adopts, we show that both goals can be achieved.

We assume there are two agents and each agent has three types. The common prior

p ∈ ∆(Θ) is defined below.

5The assumption that |Θi| ≥ 2 for all i is imposed for simplicity of notation. When at least two agents

satisfy this cardinality condition, i.e., when at least two agents have private information, all theorems of this

paper hold. See Appendix A.2 for more details.
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p θ1
2 θ2

2 θ3
2

θ1
1

1
18

2
18

3
18

θ2
1

3
18

2
18

1
18

θ3
1

2
18

2
18

2
18

3.1 Full surplus extraction

The belief of θ3
1 is a convex combination of θ1

1 and θ2
1. Therefore, the Convex Independence

condition of Crémer and McLean (1988) fails. We briefly sketch their argument to see why

full surplus extraction is impossible via a Bayesian mechanism in an auction with private

values satisfying θ1
1 > θ2

1 > θ3
1 > θ2 > 0 for all θ2 ∈ Θ2. Suppose by way of contradiction that

a transfer rule to agents, φ = (φ1, φ2) : Θ → R2, extracts full surplus. To maximize social

surplus, the good should always be allocated to agent 1. As agent 1 obtains zero surplus at

every type, incentive compatibility implies:

IC(θ1
1θ

3
1) 0 ≥ θ1

1 + 1
6
φ1(θ3

1, θ
1
2) + 2

6
φ1(θ3

1, θ
2
2) + 3

6
φ1(θ3

1, θ
3
2),

IC(θ2
1θ

3
1) 0 ≥ θ2

1 + 3
6
φ1(θ3

1, θ
1
2) + 2

6
φ1(θ3

1, θ
2
2) + 1

6
φ1(θ3

1, θ
3
2).

Averaging them yields 0 ≥ 1
2
θ1

1+ 1
2
θ2

1+ 2
6
φ1(θ3

1, θ
1
2)+ 2

6
φ1(θ3

1, θ
2
2)+ 2

6
φ1(θ3

1, θ
3
2) > θ3

1+ 2
6
φ1(θ3

1, θ
1
2)+

2
6
φ1(θ3

1, θ
2
2)+ 2

6
φ1(θ3

1, θ
3
2), a contradiction, as type-θ3

1 agent 3 should have non-negative payoff.

Next, we see how full surplus extraction can be guaranteed when ambiguous transfers are

allowed. Suppose the mechanism designer writes down either φ1 or φ2 on a piece of paper,

which is the true transfer rule. She hides the paper, only tells agents that φ1 and φ2 are

the two potential rules, and announces that agent 1 will get the good. After agents report

their types, the mechanism designer reveals the paper with the true rule, makes transfers

accordingly, and allocates the good.

Let the transfer rules to agents be φ1 = (φ1
1, φ

1
2) and φ2 = (φ2

1, φ
2
2):

φ1
i (θ1, θ2) =

{
−θ1 + cψ(θ1, θ2), if i = 1,

−cψ(θ1, θ2), if i = 2,
φ2
i (θ1, θ2) =

{
−θ1 − cψ(θ1, θ2), if i = 1,

cψ(θ1, θ2), if i = 2,

where c ≥ 2(θ1
1 − θ3

1) and the function ψ : Θ→ R is defined below.

ψ θ1
2 θ2

2 θ3
2

θ1
1 6 0 −2

θ2
1 −2 3 0

θ3
1 0 −3 3
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Notice that when a type-θ̄i agent i truthfully reports her type, ψ(θ̄i, ·) has an expected

value of zero under the belief pi(·|θ̄i). However, when she misreports θ̂i 6= θ̄i, ψ(θ̂i, ·) has a

non-zero expected value. Therefore, among the expected values of cψ(θ̂i, ·) and−cψ(θ̂i, ·), the

lower one is negative. This feature gives ambiguity-averse agents the incentive to truthfully

reveal their types.

To formally prove that full surplus extraction can be achieved, we first notice that both

φ1 and φ2 give the mechanism designer the expected total surplus, 1
3
(θ1

1 + θ2
1 + θ3

1), and that

both agents obtain expected payoff of zero.

Then we check the incentive compatibility condition. When type-θ̄2 agent 2 misreports

θ̂2 6= θ̄2, her expected payoffs according to φ1 and φ2 are±
∑
θ1∈Θ1

cψ(θ1, θ̂2)p2(θ1|θ̄2). The worst

case is non-positive, which is not better than truthfully revealing. When type-θ̄1 agent 1

misreports θ̂1 6= θ̄1, her worst case expected payoff is min{θ̄1−θ̂1±c
∑
θ2∈Θ2

ψ(θ̂1, θ2)p1(θ2|θ̄1)} ≤

θ̄1 − θ̂1. Therefore, any “upward” misreport is not profitable. It remains to verify the three

“downward” incentive compatibility constraints:

IC(θ1
1θ

2
1) 0 ≥ θ1

1 − θ2
1 − c|16 × (−2) + 2

6
× 3 + 3

6
× 0| = θ1

1 − θ2
1 − 2

3
c,

IC(θ1
1θ

3
1) 0 ≥ θ1

1 − θ3
1 − c|16 × 0 + 2

6
× (−3) + 3

6
× 3| = θ1

1 − θ3
1 − 1

2
c,

IC(θ2
2θ

3
2) 0 ≥ θ2

1 − θ3
1 − c|36 × 0 + 2

6
× (−3) + 1

6
× 3| = θ2

1 − θ3
1 − 1

2
c.

They hold because c ≥ 2(θ1
1 − θ3

1) and θ1
1 > θ2

1 > θ3
1. Therefore, in this example, full surplus

can be extracted via ambiguous transfers.

Intuitively, with multiple transfer rules, an agent’s worst-case expected payoffs of different

misreports are achieved by distinct transfers. Compared to Bayesian mechanisms, we do not

need one transfer rule to satisfy all incentive compatibility constraints. Hence, full surplus

can be extracted under a weaker condition than Convex Independence.

Notice that for each i and θ̄i 6= θ̂i, pi(·|θ̄i) 6= pi(·|θ̂i), i.e., i’s beliefs under distinct

types are different. This fact plays an essential role for ambiguous transfers to work. To

see this, consider an alternative common prior p̃ satisfying p̃1(·|θ1
1) = p̃1(·|θ2

1) and suppose

by way of contradiction that full surplus extraction is guaranteed by a set of ambiguous

transfers Φ̃. Then by truthfulling revealing, every agent, obtains zero expected payoff, in

particular, type-θ2
1 agent 1 has expected payoff 0 = θ2

1 + inf
φ̃∈Φ̃

∑
θ2∈Θ2

φ̃1(θ2
1, θ2)p̃1(θ2|θ2

1). By

misreporting, every agent obtains non-positive expected payoff, in particular, type-θ1
1 agent

1 has the following expected payoff of misreporting θ2
1, θ1

1 + inf
φ̃∈Φ̃

∑
θ2∈Θ2

φ̃1(θ2
1, θ2)p̃1(θ2|θ1

1) ≤ 0.

As p̃1(·|θ1
1) = p̃1(·|θ2

1), the two expressions imply θ1
1 ≤ θ2

1, a contradiction.
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3.2 Implementation

The common prior p satisfies neither the Convex Independence condition nor the Identifiabil-

ity condition of Kosenok and Severinov (2008). Therefore, one can follow their approach to

construct utility functions such that an efficient allocation rule is not implementable. Agents

1 and 2 face a feasible set of alternatives A = {x0, x1, x2}. The outcome x0 gives both agents

zero payoffs at all type profiles. The payoffs given by allocation rules x1 and x2 are presented

below, where the first component denotes agent 1’s payoff and the second denotes 2’s. We

assume 0 < 3a < B.

x1 θ1
2 θ2

2 θ3
2

θ1
1 a, 0 a, a a, a

θ2
1 a, 0 a, a a, a

θ3
1 a, 0 a, a a, a

x2 θ1
2 θ2

2 θ3
2

θ1
1 a, a a− 2B, a+B a, 0

θ2
1 a, a a− 2B, a+B a, 0

θ3
1 a, a a− 2B, a+B a, 0

The efficient allocation rule is q(θ1, θ
1
2) = x2 and q(θ1, θ

2
2) = q(θ1, θ

3
2) = x1 for all θ1 ∈ Θ1.

To see q is not implementable via an interim individually rational and ex-post budget-

balanced Bayesian mechanism, we suppose by way of contradiction that there is a transfer

rule φ : Θ→ RN implementing q. Adding all the twelve incentive compatibility constraints

and taking into account ex-post budget balance yield 3a ≥ B, a contradiction.

Next, we construct ambiguous transfers to implement q. Let φ1 and φ2 be the two

potential transfer rules defined by φ1
1(θ) = φ2

2(θ) = cψ(θ) and φ1
2(θ) = φ2

1(θ) = −cψ(θ) for

all θ ∈ Θ, where c ≥ 0.75B and ψ is defined in the previous subsection. Note that both φ1

and φ2 are ex-post budget-balanced.

Type-θ̄i agent i’s interim individual rationality holds, because (1) ui(q(θ̄i, θ−i), (θ̄i, θ−i)) =

a for all i ∈ I and (θ̄i, θ−i) ∈ Θ and (2) cψi(θ̄i, ·)’s expected value is 0. When type-θ̄i agent

misreports θ̂i 6= θ̄i, her worst-case expected payoff satisfies

min
∑
θj∈Θj

(
ui
(
q(θ̂i, θj), (θ̄i, θj)

)
± φi(θ̂i, θj)

)
pi(θj|θ̄i) ≤

∑
θj∈Θj

(
ui
(
q(θ̂i, θj), (θ̄i, θj)

))
pi(θj|θ̄i).

When (θ̄i, θ̂i) 6= (θ2
2, θ

1
2), such a misreport gives the agent the same or a lower payoff, and

therefore, the above inequality implies that IC(θ̄iθ̂i) holds. For IC(θ2
2θ

1
2), such a misreport

gives i worst-case expected payoff is a+B − c|2
6
× 6 + 2

6
× (−2) + 2

6
× 0| = a+B − 4

3
c ≤ a.

Therefore, the interim individually rational and ex-post budget-balanced mechanism with

ambiguous transfers implements q.

Again, the fact that beliefs are different for distinct types plays an essential role. To see

this, consider an alternative common prior p̃ satisfying p̃2(·|θ1
2) = p̃2(·|θ2

2). Suppose by way of
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contradiction that the interim individually rational and ex-post budget-balanced ambiguous

transfers Φ̃ implement q. Then the following inequalities hold:

IC(θ1
2θ

2
2) a+ min

φ̃∈Φ̃

∑
θ1∈Θ1

φ̃2(θ1, θ
1
2)p̃2(θ1|θ1

2) ≥ min
φ̃∈Φ̃

∑
θ1∈Θ1

φ̃2(θ1, θ
2
2)p̃2(θ1|θ1

2),

IC(θ2
2θ

1
2) a+ min

φ̃∈Φ̃

∑
θ1∈Θ1

φ̃2(θ1, θ
2
2)p̃2(θ1|θ2

2) ≥ a+B + min
φ̃∈Φ̃

∑
θ1∈Θ1

φ̃2(θ1, θ
1
2)p̃2(θ1|θ2

2).

As p̃2(·|θ1
2) = p̃2(·|θ2

2), summing the two expressions gives 2a ≥ a+B, a contradiction.

4 Mechanism with ambiguous transfers

In this section, we formalize the mechanism adopted in the motivating example.

Definition 4.1: A mechanism with ambiguous transfers is a triplet M = (M, q̃, Φ̃),

where M = ×i∈IMi is the message space, q̃ : M → A is a message-contingent allocation rule,

and Φ̃ is a set of message-contingent transfer rules with a generic element φ̃ : M → Rn. We

call the set Φ̃ ambiguous transfers.

The mechanism designer commits to the allocation rule q̃ and an arbitrary transfer rule

φ̃ ∈ Φ̃. Before reporting messages, agents are informed of the set of transfers Φ̃ and the

allocation rule q̃, but not φ̃, the secretly chosen transfer rule. After agents report their mes-

sages, the mechanism designer reveals φ̃. Then allocations and transfers are made according

to q̃ and φ̃.

In this mechanism, agents face both risk and uncertainty. They merely know the distribu-

tion of others’ private information, which we interpret as the risk. Their limited knowledge

on the exact transfer rule leads to a layer of uncertainty. For each transfer rule, agents

compute their expected payoffs based on beliefs generated by the common prior. As agents

only know a set of potential transfer rules Φ̃, following the spirit of Gilboa and Schmeidler

(1989)’s maxmin expected utility (MEU), we assume that agents make decisions based on

the worst-case transfer rule.

A strategy of agent i is a mapping σi : Θi →Mi. Like most mechanism design works with

ambiguity aversion (e.g., Wolitzky (2016), Di Tillio et al. (2017)), we restrict attention to pure

strategies. When there is no ambiguity, the restriction is without loss of generality. When

there is ambiguity, depending on how the payoff of playing a mixed strategy is formalized, the

restriction could be with or without loss of generality.6 An equilibrium of the mechanism

M = (M, q̃, Φ̃) is a strategy profile σ = (σi)i∈I such that

6See Wolitzky (2016) for more details.
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inf
φ̃∈Φ̃

∑
θ−i∈Θ−i

[ui
(
q̃(σ(θi, θ−i)), (θi, θ−i)

)
+ φ̃i(σ(θi, θ−i))]pi(θ−i|θi)

≥ inf
φ̃∈Φ̃

∑
θ−i∈Θ−i

[ui
(
q̃(σ′i(θi), σ−i(θ−i)), (θi, θ−i)

)
+ φ̃i(σ

′
i(θi), σ−i(θ−i))]pi(θ−i|θi)

for all i ∈ I, θi ∈ Θi, and σ′i : Θi →Mi.

This paper studies two related but different objectives. One is full surplus extraction by

a revenue maximizing mechanism designer, and the other is implementation of an efficient

allocation rule via an interim individually rational and ex-post budget-balanced mechanism.

A mechanism with ambiguous transfers M = (M, q̃, Φ̃) extracts full surplus if there

exists an equilibrium σ such that

−
∑
θ∈Θ

∑
i∈I

φ̃i(σ(θ))p(θ) = max
q̂:Θ→A

∑
θ∈Θ

∑
i∈I

ui
(
q̂(θ), θ

)
p(θ),∀φ̃ ∈ Φ̃. (1)

The requirement that every transfer rule achieves the same ex-ante revenue follows from

Di Tillio et al. (2017)’s Consistency condition, i.e., any transfer rule with a lower expected

revenue is non-credible to buyers and thus should not be included in Φ̃. To maximize total

surplus, the mechanism designer chooses an ex-post efficient allocation rule q̂.

A mechanism with ambiguous transfers M = (M, q̃, Φ̃) (partially) implements the

efficient allocation rule q, if there exists an equilibrium σ such that q̃(σ(θ)) = q(θ) for all

θ ∈ Θ.

If for each agent i ∈ I, we have Mi = Θi, i.e., M = Θ, then M is said to be a di-

rect mechanism. We omit the message space Θ in direct mechanisms. A direct mechan-

sim (q,Φ) satisfies interim incentive compatibility if inf
φ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θi, θ−i), (θi, θ−i)

)
+

φi(θi, θ−i)]pi(θ−i|θi) ≥ inf
φ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θ′i, θ−i), (θi, θ−i)

)
+ φi(θ

′
i, θ−i)]pi(θ−i|θi) for all i ∈ I,

θi, θ
′
i ∈ Θi. Lemma 4.1 (on revelation principle) implies that it is without loss of generality

to focus on incentive compatible direct mechanisms.

Lemma 4.1: Full surplus extraction can be achieved by a mechanism with ambiguous trans-

fers if and only if there is an incentive compatible direct mechanism with ambiguous transfers

(q,Φ) that extracts the full surplus. An allocation rule q is implementable via a mechanism

with ambiguous transfers if and only if there exists a set of ambiguous transfers Φ such that

the direct mechanism with ambiguous transfers (q,Φ) is incentive compatible.

Throughout this paper, the outside option x0 is normalized to give all agents zero payoffs

at all type profiles. The direct mechanism with ambiguous transfers (q,Φ) satisfies interim

individual rationality if for all i ∈ I and θi ∈ Θi, inf
φ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θi, θ−i), (θi, θ−i)

)
+
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φi(θi, θ−i)]pi(θ−i|θi) ≥ 0. For both full surplus extraction and implementation, we require

that the mechanism is interim individually rational so that agents participate voluntarily.

The direct mechanism with ambiguous transfers (q,Φ) satisfies ex-post budget balance

if for all φ ∈ Φ and θ ∈ Θ,
∑
i∈I

φi(θ) = 0. To implement an efficient allocation rule q, we also

require the mechanism is ex-post budget-balanced so that outside money is not needed to

finance the efficient outcome. Budget balance is not required for the problem of full surplus

extraction, because the mechanism designer collects the full surplus.

5 Necessary and sufficient condition

Our necessary and sufficient condition, the Beliefs Determine Preferences property, is intro-

duced by Neeman (2004). It requires that an agent with different types should have distinct

beliefs.

Definition 5.1: The Beliefs Determine Preferences (BDP) property holds for agent i

if there does not exist θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i such that

pi(θ−i|θ̄i) = pi(θ−i|θ̂i),∀θ−i ∈ Θ−i.

The following subsections present the necessary and sufficient condition for full surplus

extraction and for implementation of an efficient allocation under any utility functions. The

BDP property plays the key role in both results.

5.1 Full surplus extraction

Theorem 5.1: Given a common prior p, full surplus extraction can be achieved via an

interim individually rational mechanism with ambiguous transfers under any profile of utility

functions if and only if the BDP property holds for all agents.

In the Appendix, the proof starts with converting the original problem into finding incen-

tive compatible ambiguous transfers such that every interim individual rationality constraint

binds.

The necessity part is proved through constructing utility functions such that full surplus

extraction cannot be achieved when the BDP property fails for some agent.

We prove the sufficiency part by constructing a mechanism consisting of two transfer

rules. Although there are mechanisms with more transfers that extract the full surplus, to

be consistent with the spirit of minimal mechanisms as in Di Tillio et al. (2017), we only
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present the one with two rules. The construction is decomposed into several lemmas, which

are useful for both full surplus extraction and implementation. Lemma A.1 shows that for

each i ∈ I and θ̄i, θ̂i ∈ Θi satisfying θ̄i 6= θ̂i, there exists a budget-balanced transfer rule ψθ̄iθ̂i

with zero expected values to all truthfully reporting agents, such that i achieves a negative

expected value when she lies from θ̄i to θ̂i. This step is proven via Fredholm’s theorem of the

alternative. As ψθ̄iθ̂i only needs to satisfy one incentive compatibility constraint, its existence

is guaranteed by the BDP property instead of the stronger Convex Independence condition.

Lemmas A.2 and A.3 construct a linear combination of transfer rules (ψθ̄iθ̂i)i∈I,θ̄i,θ̂i∈Θi,θ̄i 6=θ̂i ,

denoted by ψ, such that ψ is ex-post budget-balanced, gives all truth-telling agents zero

expected values, and gives all misreporting agents non-zero ones. Pick an ex-post efficient

allocation rule q and let ηi(θ) = −ui(q(θ), θ) for all i ∈ I and θ ∈ Θ. Let the set of

ambiguous transfers for agent i be Φi = {ηi + cψi, ηi − cψi}. As ηi transfers agent i’s entire

surplus to the mechanism designer and ψi has zero expected value, every interim individual

rationality constraint binds. As ψi has non-zero expected value whenever i misreports, with

a sufficiently large c, the worse expected utility derived from ηi+cψi and ηi−cψi is negative.

Thus, incentive compatibility can be achieved.

We remark that in the construction of ambiguous transfers, budget balance of ψ is not

necessary for full surplus extraction. However, requiring budget balance of ψ allows us to use

the same lemmas to study both full surplus extraction and implementation. In addition, we

achieve ex-post full surplus extraction. Namely, if the mechanism designer wishes to equate

the ex-post revenue and ex-post total surplus, our method still works.

When N ≥ 2 and |Θi| ≥ 2 for all i, our necessary and sufficient condition holds for almost

every common prior p ∈ ∆(Θ).7

The necessary and sufficient condition for full surplus extraction under Bayesian mech-

anism, the Convex Independence condition, requires that for every agent i and type θi,

pi(·|θi) is not in the convex hull of (pi(·|θ′i))θ′i 6=θi . It holds generically when N ≥ 2 and

2 ≤ |Θi| ≤ |Θ−i| for all i. The BDP property is weaker than Convex Independence in two

aspects. Firstly, the BDP property can address some linear cases of correlation that are ruled

out by Convex Independence, and secondly, the BDP property holds generically even if one

agent has too many types compared to others, but in this case Convex Independence fails

for sure. When the BDP property holds for all agents but the Convex Independence fails

for someone, mechanisms with ambiguous transfers perform strictly better than Bayesian

mechanisms in full surplus extraction.

7If agents without private information are included in I (see Appendix A.2), the BDP property holds

generically for all agents if there exists i, j ∈ I with i 6= j such that |Θi|, |Θj | ≥ 2.
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5.2 Implementation

Theorem 5.2: Given a common prior p, an ex-post efficient allocation rule q is imple-

mentable via an interim individually rational and ex-post budget-balanced mechanism with

ambiguous transfers under any profile of utility functions if and only if the BDP property

holds for all agents.

When the BDP property fails, we construct utility functions such that an efficient al-

location rule is not implementable. We thus prove the necessity part of this theorem. For

the sufficiency part, recall that we constructed budget-balanced transfer rule ψ that gives

all truth-telling agents zero expected values and all misreporting agents non-zero ones. Pick

any ex-post budget-balanced and interim individually rational transfer rule η. Let the set

of ambiguous transfers be Φ = {η+ cψ, η− cψ}. Incentive compatibility can be achieved by

choosing a sufficiently large c.

We remark that efficiency of q does not play a role in the proof. Actually, by com-

binating our proof with that of Kosenok and Severinov (2008), Theorem 5.2 can be ex-

tended to implement any ex-ante socially rational allocation rule q, i.e., q satisfying∑
θ∈Θ

∑
i∈I

ui
(
q(θ), θ

)
p(θ) ≥ 0 rather than just efficient ones.

Kosenok and Severinov (2008) prove that the conditions of Convex Independence and

Identifiability are necessary and sufficient for implementing all efficient or all ex-ante so-

cially rational allocation rules via interim individually rational and ex-post budget-balanced

Bayesian mechanisms. The Identifiability condition is generic when N = 3 and there exists

i ∈ I such that |Θi| ≥ 3 or N > 3. In a budget balanced Bayesian mechanism without

Identifiability condition, some agent i may have the incentive to misreport in a way that

makes the truthful report of some j 6= i appear untruthful because by budget balance i can

benefit from j’s negative expected transfer. However, when the set of ambiguous transfers Φ

is used, i does not have such an incentive, because i is ambiguous about whether misreport

of j would result in a positive expected transfer to j or a negative expected transfer. Hence,

with ambiguous transfers, we can relax the Identifiability condition.

As the BDP property is weaker than the Convex Independence condition, our ambiguous

transfers require a weaker condition than Bayesian mechanisms. The difference between

our condition and that of Kosenok and Severinov (2008) characterizes when ambiguous

transfers perform strictly better than Bayesian mechanisms in implementation of all efficient

or ex-ante socially rational allocation rules. In particular, as Convex Independence and

Identifiability never hold simultaneously in two-agent settings but the BDP property holds

generically, ambiguous transfers provide a solution for the generic impossibility of two-agent
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individually rational, budget-balanced and efficient mechanism design.

6 Extension

6.1 Implementation under private value environments

When proving the necessity part of Theorem 5.2, we construct a profile of interdependent

value utility functions. Some may wonder if the BDP property is necessary for implemen-

tation under private value environments. We will show at least N − 1 agents satisfying the

BDP property is necessary and sufficient for ex-post efficient, interim individually rational,

and ex-post budget-balanced implementation under all private value utility functions. We

will also demonstrate that the condition is strictly weaker than the one needed for Bayesian

implementation under private value environments.

A utility function ui is said to have private value if ui
(
a, (θi, θ−i)

)
= ui

(
a, (θi, θ

′
−i)
)

for

all θi ∈ Θi, θ−i, θ
′
−i ∈ Θ−i, and a ∈ A. We denote ui

(
a, (θi, θ−i)

)
by ui(a, θi) in this case.

Theorem 6.1: Given a common prior p, an ex-post efficient allocation rule q is imple-

mentable via an interim individually rational and ex-post budget-balanced mechanism with

ambiguous transfers under any profile of private value utility functions if and only if the

BDP property holds for at least N − 1 agents.

We prove the necessity part by construction again, but the utility functions have private

values. For the sufficiency part, we first construct transfers such that N − 1 agents are

incentive compatible. Then by allocating all the surplus to the remaining agent and aligning

her incentives with the mechanism designer, the agent will also report truthfully in the

private value environment, i.e., when all agents have private values.

Recall in Theorem 5.2, efficiency of the allocation rule q does not play any role, and thus

one can implement inefficient but ex-ante socially rational allocation rules if all agents satisfy

the BDP property. However, when only N − 1 agents satisfy the BDP property, efficiency

of q plays a role in this proof. This is because we let the agent whose BDP property fails

be a budget breaker. Example A.1 in the Appendix illustrates that an inefficient allocation

rule may not be implementable if just N − 1 agents satisfy the BDP property.

To compare ambiguous transfers with Bayesian mechanisms, we present the following

necessary condition for Bayesian implementation under private value environments.

Proposition 6.1: Given a common prior p, if any ex-post efficient allocation rule q is im-

plementable via an interim individually rational and ex-post budget-balanced Bayesian mech-
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anism under any profile of private value utility functions, then the Convex Independence

condition holds for at least N − 1 agents.

The necessary and sufficient condition of Theorem 6.1 is strictly weaker than the nec-

essary condition of Proposition 6.1.8 Hence, ambiguous transfers perform strictly better

than Bayesian mechanisms in implementing efficient allocation rules under private value

environments.

6.2 No common prior

This subsection adopts Aumann (1976)’s agreeing to disagreeing framework to study am-

biguous transfers. Namely, we relax the assumption that beliefs are generated by a common

prior but still assume common knowledge of their structure.9 We provide sufficient conditions

under which efficient allocations are implementable via an interim individually rational and

ex-post budget-balanced mechanism with ambiguous transfers. We also demonstrate with

examples that ambiguous transfers can implement Bayesian non-implementable allocations.

In Bayesian mechanism design literature, Bergemann et al. (2012), Smith (2010), and

Börgers et al. (2015) have documented results related to ex-post efficiency maximization

under agreeing to disagreeing framework. Without requiring individual rationality and bud-

get balance, Bergemann et al. (2012) show that the BDP property is sufficient for Bayesian

implementation of efficient allocations, but the current paper requires interim individual ra-

tionality and ex-post budget balance. Smith (2010) compares the welfare of two different

mechanisms on public good provision. Börgers et al. (2015) provides a sufficient condition

on when agents’ interim payoffs can be arbitrarily increased, given there is an incentive com-

patible mechanism. Different from Smith (2010) and Börgers et al. (2015), the current paper

provides a general condition on when the first-best efficiency is implementable.

In this subsection, pi(·|θi) still represents the belief of type-θi agent i, although the beliefs

are not generated by a common prior, i.e., there does not exist p ∈ ∆(Θ) with p(θi) > 0 for

all θi ∈ Θi such that every pi(·|θi) is obtained by Bayesian updating p.

Without a common prior between the mechanism designer and all agents, full surplus

extraction can still be guaranteed via ambiguous transfers when the BDP property holds for

all agents. However, full surplus extraction is no longer equivalent to revenue maximization.

By utilizing the lack of common prior between the mechanism designer and agents, the

8The necessary condition of Proposition 6.1 is not sufficient for Bayesian implementation under private

value environments. By strengthening it with the Identifiability condition, we can adapt the argument of

Kosenok and Severinov (2008) to give a sufficiency result under private value environments.
9See Morris (1995) for a review of the justifications of modeling with and without a common prior.
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mechanism designer can arbitrarily increase ex-ante revenue. Therefore, we do not study

this problem in this section.

Common prior plays an important role when we prove the Theorems 5.2 and 6.1. In

Example 6.1, the BDP property holds for all agents, but without a common prior, an efficient

allocation rule is not implementable via ambiguous transfers.

Example 6.1: Consider a two-agent two-type model with beliefs p1(θ1
2|θ1

1) = 0.3, p1(θ1
2|θ2

1) =

0.2, p2(θ1
1|θ1

2) = 0.3, and p2(θ1
1|θ2

2) = 0.25, which are not generated by a common prior. The

BDP property is satisfied by both agents. The feasible set of alternatives, the payoffs, and the

efficient allocation rule are identical to the motivating example on implementation, except

that (1) we no longer have types θ3
1 and θ3

2 and (2) we assume 0 < 145a < 21B.

Suppose by way of contradiction that there is an interim individually rational and ex-post

budget-balanced mechanism with ambiguous transfers M = (q,Φ) implementing the efficient

allocation rule q. As IC(θ2
2θ

1
2) holds, for any ε, there exists an interim individually rational

transfer rule φ ∈ Φ (interpreted as the payment from agent 1 to 2) such that:

a+ 0.25φ(θ1
1, θ

2
2) + 0.75φ(θ2

1, θ
2
2) + ε ≥ a+B + 0.25φ(θ1

1, θ
1
2) + 0.75φ(θ2

1, θ
1
2).

Multiply IR(θ1
1),IR(θ2

1),IR(θ1
2),IR(θ2

2), and IC(θ2
2θ

1
2) by 40, 105, 75, 70, and 42 respectively,

add them up, and let ε go to zero, we obtain that 290a ≥ 42B, a contradiction. Therefore, q

is not implementable via ambiguous transfers.

Despite the failure of Theorem 5.2 without a common prior, a sufficient condition on when

efficient allocations are implementable is still feasible. We start with replacing Assumption

2.1 with the following one throughout this subsection because without a common prior, the

notation p(θi, θj) is not well defined.

Assumption 6.1: For each i, j ∈ I, i 6= j, and (θi, θj) ∈ Θi ×Θj, assume pi(θj|θi) > 0.

Below we introduce a condition called the No Common Prior* property, which strengthens

the assumption that agents’ beliefs are not generated by a common prior. For all i 6= j, θi,

and θj, we abuse notation by let pj(θi, ·|θj) be the vector
(
pj(θi, θ−i−j|θj)

)
θ−i−j∈Θ−i−j

when

N ≥ 3, and be pj(θi|θj) when N = 2.

Definition 6.1: Agent i satisfies the No Common Prior* (NCP*) property if there do

not exist different types θ̄i 6= θ̂i such that

1. there exists µ ∈ ∆(Θ) such that µ(θj) > 0 and µ(θ−j|θj) = pj(θ−j|θj) for all (j, θj) 6=
(i, θ̂i),
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2. there exists C̄ > 0 and Ĉ > 1 such that Ĉpi(θj, ·|θ̂i) = pi(θj, ·|θ̄i) + C̄
pi(θj |θ̄i)
pj(θ̄i|θj)

pj(θ̂i, ·|θj)
for any j 6= i and θj.

When there is a common prior over Θ, one can show the NCP* property is equivalent

to the BDP property. Without a common prior over Θ, the statement of NCP* property

cannot be simplied, but it is very weak. For example, if N ≥ 3 and there are agents

i 6= j and types θ̄i 6= θ̂i, θ̄j 6= θ̂j, such that the probability distributions over Θ−i−j satisfy

pi(·|θ̄iθ̄j) 6= pj(·|θ̄iθ̄j) and pi(·|θ̂iθ̂j) 6= pj(·|θ̂iθ̂j), then the NCP* property holds for all i ∈ I.

In Example 6.1, the NCP* property fails for agent 1, as (i, θ̄i, θ̂i) = (1, θ2
1, θ

1
1) satisfies

the two conditions in the definition. The first condition holds by letting µ(θ1
1, θ

1
2) = 9

142
,

µ(θ1
1, θ

2
2) = 28

142
, µ(θ2

1, θ
1
2) = 21

142
, and µ(θ2

1, θ
2
2) = 84

142
. The second condition can be written

as Ĉ
pi(θj |θ̂i)
pi(θj |θ̄i)

= 1 + C̄
pj(θ̂i|θj)
pj(θ̄i|θj)

. By setting Ĉ = 25
14

and C̄ = 8
3
, we see that 25

14
( 0.3

0.25
, 0.7

0.75
) =

(1, 1) + 8
3
(0.3

0.7
, 0.2

0.8
).

In the following theorem, we provide a sufficient condition for implementation via am-

biguous transfers when there is no common prior.

Theorem 6.2: Given beliefs
(
pi(·|θi)

)
i∈I,θi∈Θi

that are not generated by a common prior, if

the BDP and NCP* properties hold for all agents, then an ex-post efficient allocation rule q

is implementable via an interim individually rational and ex-post budget-balanced mechanism

with ambiguous transfers under any profile of utility functions.

Similar to Theorem 5.2, efficiency of q does not play a role in this proof. We can actually

implement any q such that
∑

θ−i∈Θ−i

[ui(q(θi, θ−i), (θi, θ−i)) + ηi(θi, θ−i)]pi(θ−i|θi) ≥ 0 for all

i ∈ I, θi ∈ Θi and some ex-post budget-balanced η.10

The example below shows that there are cases when ambiguous transfers perform better

than Bayesian mechanisms.

Example 6.2: In this example without a common, the efficient allocation rule q is not

Bayesian implementable, but is implementable via ambiguous transfers.

Consider the following beliefs that are not be generated by a common prior:

p1(θ̃2|θ̃1) θ1
2 θ2

2

θ1
1

1
3

2
3

θ2
1

1
2

1
2

θ3
1

2
3

1
3

p2(θ̃1|θ̃2) θ1
2 θ2

2

θ1
1

7
28

13
28

θ2
1

12
28

12
28

θ3
1

9
28

3
28

10With common prior, Kosenok and Severinov (2008) has proved the equivalence between this property

and ex-ante social rationality.
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The feasible set of alternatives, payoffs, and the efficient allocation rule are identical to

those in the motivating example of implementation, except that the type space is smaller here

and 0 < 9a < B is imposed. Suppose by way of contradiction that there exists payment

from agent 1 to 2 , denoted by φ, that implements q. By multiplying IR(θ1
1), IR(θ2

1), IR(θ3
1),

IC(θ1
1θ

2
1), IC(θ1

1θ
3
1), IC(θ2

1θ
1
1), IC(θ3

1θ
2
1), IR(θ1

2), IR(θ2
2), IC(θ1

2θ
2
2), and IC(θ2

2θ
1
2) by 3, 8, 3,

3, 3, 4, 3, 7, 7, 3.5, and 3.5, and summing up, we obtain 0 ≥ 3.5B − 31.5a, a contradiction.

To see q is implementable via ambiguous transfers, by Theorem 6.2 it is sufficient to check

both agents satisfy the BDP and NCP* properties. The BDP property holds clearly. To verify

the NCP* property for agent 1, consider (i, θ̄i, θ̂i) = (1, θ1
1, θ

2
1). The second condition does

not hold because there does not exist C̄ > 0 and Ĉ > 1 such that Ĉ(13
7
, 1, 1

3
) = (1, 1, 1) +

C̄(2, 1, 0.5). A symmetric argument applies to (i, θ̄i, θ̂i) = (1, θ2
1, θ

1
1). Agent 2 satisfies the

NCP* property because for each pair (θ̄2, θ̂2), the first condition in the NCP* property fails.

In a private value environment without a common prior, we have the following sufficient

condition for implementation of efficient allocations.

Theorem 6.3: Given beliefs
(
pi(·|θi)

)
i∈I,θi∈Θi

that are not generated by a common prior, if

there do not exist i 6= j such that the BDP property fails for i and the NCP* property fails

for j, then any ex-post efficient allocation rule q is implementable via an interim individually

rational and ex-post budget-balanced mechanism with ambiguous transfers under any profile

of private value utility functions.

The sufficient conditions of Theorem 6.3 is weak. Recall the strenghthening of the NCP*

property after Definition 6.1. Corollary 6.1 follows directly from the above theorem.

Corollary 6.1: When N ≥ 3 and there are agents i 6= j and types θ̄i 6= θ̂i, θ̄j 6= θ̂j, such

that the probability distributions over Θ−i−j satisfy pi(·|θ̄iθ̄j) 6= pj(·|θ̄iθ̄j) and pi(·|θ̂iθ̂j) 6=
pj(·|θ̂iθ̂j), then any ex-post efficient allocation rule q is implementable via an interim indi-

vidually rational and ex-post budget-balanced mechanism with ambiguous transfers under any

profile of private value utility functions.

This result may be surprising, because the sufficient condition is merely a slight strength-

ening of the fact that there is no common prior.

Corollary 6.2 provides another simple sufficient condition to guarantee implementation

of efficient allocations under private value environments.

Corollary 6.2: Given beliefs
(
pi(·|θi)

)
i∈I,θi∈Θi

that are not generated by a common prior, if

the BDP property holds for all agents, then any ex-post efficient allocation rule q is imple-
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mentable via an interim individually rational and ex-post budget-balanced mechanism with

ambiguous transfers under any profile of private value utility functions.

This corollary is based on Lemma A.4, which says if the BDP property holds for all agents,

then the NCP* property holds for at least N-1 agents. The details are in the Appendix.

The example below shows that there are cases when ambiguous transfers perform better

than Bayesian mechanisms.

Example 6.3: In this example of bilateral trading, the efficient allocation rule q is not

Bayesian implementable, but it is implementable via ambiguous transfers.

Agent 1 is the buyer, and 2 is the seller. Outcomes in A = {x0, x1} are feasible, where

x0 represents no trade. The payoffs of x1, trading, for both agents are given below.

x1 θ1
2 θ2

2

θ1
1 4, -3.5 4, -0.5

θ2
1 1, -3.5 1, -0.5

The efficient allocation rule satisfies q(θ2
1, θ

1
2) = x0 and q(θ) = x1 for all other θ. We

adopt the same beliefs as Example 6.1, and thus there is no common prior.

To see q is not Bayesian implementable, suppose by way of contradiction that there ex-

ists an interim individually rational and ex-post budget-balanced Bayesian mechanism that

implements q. Let φ denote the payment from agent 1 to 2. Multiply IC(θ1
1θ

2
1), IR(θ2

1),

IC(θ2
1θ

1
1), IR(θ1

2) and IC(θ2
2θ

1
2) by 4, 10, 1, 10, and 8 respectively, and then add them up. We

obtain −0.9 ≥ 0, which is a contradiction. Therefore, q is not Bayesian implementable.

However, from Corollary 6.2, we know q is implementable via ambiguous transfers.

6.3 Other ambiguity aversion preferences

To check the robustness of our result, we look at alternative preferences of ambiguity aversion

in this subsection. One is the α-maxmin expected utility (α-MEU) as in Ghirardato and

Marinacci (2002), and the other is the smooth ambiguity aversion preferences of Klibanoff

et al. (2005). This section shows that the mechanism designer can benefit from generating

ambiguity in transfers, even if agents’ preferences differ from Gilboa and Schmeidler (1989).

Ghirardato and Marinacci (2002) introduce the α-MEU, which is a generalization of the

MEU. Under an environment described in Section 2, a type-θi agent i with α-maxmin

expected utility has the following interim utility level from participating and reporting

truthfully when Φ is the set of ambiguous transfers:
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∑
θ−i∈Θ−i

ui
(
q(θi, θ−i), (θi, θ−i)

)
pi(θ−i|θi) + α inf

φ∈Φ

∑
θ−i∈Θ−i

φi(θi, θ−i)pi(θ−i|θi)

+ (1− α) sup
φ∈Φ

∑
θ−i∈Θ−i

φi(θi, θ−i)pi(θ−i|θi),

where α ∈ [0, 1]. An agent is said to be ambiguity-averse if α > 0.5. All previous sections

adopt the MEU preferences, which correspond to the case α = 1.

Under the α-MEU preferences with α > 0.5, Theorem 5.2, as well as the sufficiency part

of Theorems 5.1 and 6.1, still holds. The construction of ambiguous transfers are the same

except for choosing a different multiplier c.

An agent i with smooth ambiguity aversion has a utility function of∫
π∈∆(Φ)

v

(∫
φ∈Φ

( ∑
θ−i∈Θ−i

[ui
(
q(θi, θ−i), (θi, θ−i)

)
+ φi(θi, θ−i)]pi(θ−i|θi)

)
dπ

)
dµ,

where

• for each distribution π ∈ ∆(Φ), π(φ) measures the subjective density that φ is the true

transfer rule chosen by the mechanism designer;

• for each distribution µ ∈ ∆(∆(Φ)), µ(π) measures the subjective density that π ∈ ∆(Φ)

is the right density function the mechanism designer uses to choose the transfer rule;

• v : R→ R is a strictly increasing function that characterizes ambiguity attitude, where

a strictly concave v implies ambiguity aversion.

To see ambiguous transfers help under smooth ambiguity aversion preferences, we demon-

strate with the motivating example on implementation. Let v be a strictly increasing and

strictly concave function. Consider the same transfers as φ1 and φ2 except for a potentially

different multiplier c. Then it is easy to verify individual rationality and budget balance. A

generic element of ∆(Φ) is a Bernoulli distribution between φ1 and φ2. Let µ be the uniform

distribution over ∆(Φ) for example. As an illustration, we check IC(θ2
2θ

1
2). Truth-telling

always gives agent 2 an expected utility of∫ 1

0

v(µa+ (1− µ)a)dµ = v(a).

By misreporting from θ2
2 to θ1

2, agent 2 gets an interim utility of∫ 1

0

v
(
µ(a+B + 3

4
c) + (1− µ)(a+B − 3

4
c)
)
dµ.

For v sufficiently concave or c sufficiently large, the above expression has a value no more

than v(a), implying that truth-telling is incentive compatible. One can verify other incentive

compatibility constraints as well.
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7 Conclusion

This paper introduces ambiguous transfers to study full surplus extraction and implementa-

tion of an efficient allocation rule via an individually rational and budget-balanced mecha-

nism. We show that the BDP property is necessary and sufficient for both problems, which

is weaker than the necessary and sufficient condition for full surplus extraction and imple-

mentation via Bayesian mechanisms. Hence, ambiguous transfers can go beyond Bayesian

mechanisms. The BDP property holds generically when there are at least two agents. In

particular, under two-agent settings, the BDP property offers a solution to overcome the

negative results on bilateral trading problems generically.

A Appendix

A.1 Proofs and examples

Proof of Lemma 4.1. It is sufficient to prove the “only if” direction.

Suppose a mechanism with ambiguous transfers M = (M, q̃, Φ̃) extracts surplus, then

there exists an equilibrium σ such that

−
∑
θ∈Θ

∑
i∈I

φ̃i(σ(θ))p(θ) = max
q̂:Θ→A

∑
θ∈Θ

∑
i∈I

ui
(
q̂(θ), θ

)
p(θ),∀φ̃ ∈ Φ̃.

Define q(θ) = q̃(σ(θ)) for all θ ∈ Θ. For each φ̃ ∈ Φ̃, define φ : Θ → Rn by φ = φ̃ ◦ σ, and

denote the collection of all φ by Φ.

Suppose a mechanism with ambiguous transfers M = (M, q̃, Φ̃) implements q. Then

there exists an equilibrium σ such that q̃(σ(θ)) = q(θ) for all θ ∈ Θ. For each φ̃ ∈ Φ̃, define

φ : Θ→ Rn by φ = φ̃ ◦ σ, and denote the collection of all φ by Φ.

For both cases, we prove that the direct mechanism with ambiguous transfersM′ = (q,Φ)

is incentive compatible. To see this, for all i ∈ I, θi, θ
′
i ∈ Θi,

inf
φ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θ′i, θ−i), (θi, θ−i)

)
+ φi(θ

′
i, θ−i)]pi(θ−i|θi)

= inf
φ̃∈Φ̃

∑
θ−i∈Θ−i

[ui
(
q̃(σ(θ′i, θ−i)), (θi, θ−i)

)
+ φ̃i(σ(θ′i, θ−i))]pi(θ−i|θi)

≤ inf
φ̃∈Φ̃

∑
θ−i∈Θ−i

[ui
(
q̃(σ(θi, θ−i)), (θi, θ−i)

)
+ φ̃i(σ(θi, θ−i))]pi(θ−i|θi)

= inf
φ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θi, θ−i), (θi, θ−i)

)
+ φi(θi, θ−i)]pi(θ−i|θi),
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where the inequality comes from the fact that σi(θ
′
i) ∈ Mi can be viewed as a message sent

by i under a constant strategy. Therefore, truth-telling is an equilibrium of M′.

We present three lemmas before proving Theorems 5.1 and 5.2. With the BDP property,

Lemma A.1 implies that for each incentive compatibility constraint, there exists an individ-

ually rational and budget-balanced transfer rule satisfying this constraint. Lemmas A.2 and

A.3 establish the existence of an individually rational and budget-balanced transfer rule that

gives all truth-telling agents zero expected values and all misreporting agents non-zero ones.

Lemma A.1: The BDP property holds for agent i if and only if for all θ̄i, θ̂i ∈ Θi with

θ̄i 6= θ̂i, there exists ψθ̄iθ̂i : Θ→ Rn such that,

1.
∑
j∈I

ψθ̄iθ̂ij (θ) = 0 for all θ ∈ Θ;

2.
∑

θ−j∈Θ−j

ψθ̄iθ̂ij (θj, θ−j)pj(θ−j|θj) = 0 for all j ∈ I and θj ∈ Θj;

3.
∑

θ−i∈Θ−i

ψθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̄i) < 0.

Proof. We start with defining vectors eθ for all θ ∈ Θ and pθjθ′j for all j ∈ I, θj, θ′j ∈ Θj. Each

of the vectors has N × |Θ| dimensions, and each dimension corresponds to an agent and a

type profile. For each θ ∈ Θ, let all elements of eθ that correspond to the type profile θ

be 1 and everywhere else be 0. For each j ∈ I and θj, θ
′
j ∈ Θj, let elements of pθjθ′j that

correspond to the agent j and some type profile (θ′j, θ−j) be pj(θ−j|θj) for all θ−j ∈ Θ−j.

Everywhere else of pθjθ′j is 0.11

Sufficiency. Suppose by way of contradiction that there exists θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i,

such that no ψθ̄iθ̂i satisfies the three conditions. By Fredholm’s theorem of the alternative,

there exist coefficients (aθj)j∈I,θj∈Θj and (bθ)θ∈Θ such that

pθ̄iθ̂i =
∑
j∈I

∑
θj∈Θj

aθjpθjθj +
∑
θ∈Θ

bθeθ. (2)

Fix any agent j 6= i. All elements of pθ̄iθ̂i that correspond to agent j are zero. All those

corresponding to agent i and θ̄i are zero, too. Those corresponding to agent i and θ̂i may

not be zero. The three observations, along with expression (2), imply that

0 = aθjpj(θi, θ−i−j|θj) + bθi,θj ,θ−i−j ,∀θi, θj, θ−i−j, (3)

11As an illustration, we look at a two-agent example with Θ being ((θ11, θ
1
2), (θ11, θ

2
2), (θ21, θ

1
2), (θ21, θ

2
2)). For

each eθ or pθjθ′j , any of its first four dimensions corresponds to agent 1 and a type profile. Any of its last

four dimensions correspond to agent 2 and a type profile. Then for example, e(θ21 ,θ12) = (0, 0, 1, 0, 0, 0, 1, 0),

and pθ22θ12 = (0, 0, 0, 0, p2(θ11|θ22), 0, p2(θ21|θ22), 0).
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0 = aθ̄ipi(θj, θ−i−j|θ̄i) + bθ̄i,θj ,θ−i−j ,∀θj, θ−i−j, (4)

pi(θj, θ−i−j|θ̄i) = aθ̂ipi(θj, θ−i−j|θ̂i) + bθ̂i,θj ,θ−i−j ,∀θj, θ−i−j. (5)

By choosing θi = θ̄i in expression (3) and cancelling bθ̄i,θj ,θ−i−j in expressions (3) and

(4), we have aθjpj(θ̄i, θ−i−j|θj) = aθ̄ipi(θj, θ−i−j|θ̄i). Summing across all θ−i−j ∈ Θ−i−j when

N ≥ 3 or ignoring any θ−i−j when N = 2 yields aθjpj(θ̄i|θj) = aθ̄ipi(θj|θ̄i). From Bayes’ rule,

we further know aθj = aθ̄i
pj(θj)

pi(θ̄i)
for all θj ∈ Θj.

By choosing θi = θ̂i in expression (3) and pluging in aθj derived in the previous paragraph,

we know bθ̂i,θj ,θ−i−j=− aθ̄i
pj(θj)

pi(θ̄i)
pj(θ̂i, θ−i−j|θj) = −aθ̄i

pi(θ̂i)

pi(θ̄i)
pi(θj, θ−i−j|θ̂i) for all θj, θ−i−j.

Pluging bθ̂i,θj ,θ−i−j into expression (5) yields pi(θj, θ−i−j|θ̄i) = (aθ̂i−aθ̄i
pi(θ̂i)

pi(θ̄i)
)pi(θj, θ−i−j|θ̂i)

for all θj,θ−i−j. Hence, aθ̂i − aθ̄i
pi(θ̂i)

pi(θ̄i)
= 1 and pi(·|θ̄i) = pi(·|θ̂i), a contradiction.

Necessity. Suppose the BDP property fails for agent i, i.e., there exists θ̄i 6= θ̂i such

that pi(·|θ̄i) = pi(·|θ̂i). For all ψθ̄iθ̂i such that
∑

θ−i∈Θ−i

ψθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̂i) = 0, we have∑
θ−i∈Θ−i

ψθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̄i) = 0. Hence, there does not exist ψθ̄iθ̂i such that the three

conditions stated in the lemma hold.

Lemma A.2: For any positive integer K and any matrix XK×K whose diagonal elements

are all negative, there exists λ ∈ RK+\{0} such that
K∑
k̃=1

xkk̃λk̃ 6= 0 for all k ∈ {1, ..., K}.

Proof. We prove the result by induction.

First, let K = 1. Pick an arbitrary λ1 > 0. As x11 < 0, the statement holds for 1.

Suppose the statement holds forK−1, whereK ≥ 2. Now we consider an arbitraryXK×K

with negative diagonal elements. By the supposition for the northwest K−1 by K−1 block,

there exists (λ1, ..., λK−1) ∈ RK−1
+ \{0} such that

K−1∑
k̃=1

xkk̃λk̃ 6= 0 for all k ∈ {1, ..., K − 1}.

Case 1. Suppose
K−1∑
k̃=1

xKk̃λk̃ 6= 0. Let λK = 0, and thus the statement holds for K.

Case 2. Suppose
K−1∑
k̃=1

xKk̃λk̃ = 0 and xKk0λk0 6= 0 for some k0 ∈ {1, ..., K − 1}. Let

(λ′1, ..., λ
′
K−1) = (λ1, ..., λk0−1, λk0 + ε, λk0+1, ..., λK−1) for ε > 0. Then

K−1∑
k̃=1

xKk̃λ
′
k̃
6= 0. When
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ε is sufficiently close to zero,
K−1∑
k̃=1

xkk̃λ
′
k̃
6= 0 for all k ∈ {1, ..., K − 1}. Therefore, we can

replace (λ1, ..., λK−1) with (λ′1, ..., λ
′
K−1) and go back to Case 1.

Case 3. Suppose xKk̃λk̃ = 0 for all k̃ ∈ {1, ..., K−1}. Let λK > 0 and λK 6= −
∑K−1

k̃=1
xkk̃λk̃

xkK
for all k ∈ {1, ..., K − 1} with xkK 6= 0. Then the statement holds for K.

Lemma A.3: If the BDP property holds for all agents, then there exists ψ : Θ → Rn such

that

1.
∑
i∈I

ψi(θ) = 0 for all θ ∈ Θ;

2.
∑

θ−i∈Θ−i

ψi(θi, θ−i)pi(θ−i|θi) = 0 for all i ∈ I and θi ∈ Θi;

3.
∑

θ−i∈Θ−i

ψi(θ̂i, θ−i)pi(θ−i|θ̄i) 6= 0 for all i ∈ I and θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i.

Proof. Let K be the cardinality of K = {(θ̄i, θ̂i)|i ∈ I, θ̄i, θ̂i ∈ Θi, θ̄i 6= θ̂i}. Let f : K →
{1, ..., K} be a one to one mapping, which allows us to index the elements of K.

For all k, k̃ ∈ {1, ..., K} (k, k̃ may be equal), where f−1(k) = (θ̄i, θ̂i) and f−1(k̃) = (˜̄θj,
˜̂
θj),

we define xkk̃ =
∑

θ−i∈Θ−i

ψ
˜̄θj

˜̂
θj

i (θ̂i, θ−i)pi(θ−i|θ̄i),, where each ψ
˜̄θj

˜̂
θj is defined and proved to exist

in Lemma A.1. By the third property of ψ
˜̄θj

˜̂
θj , we know xk̃k̃ < 0 for all k̃ ∈ {1, ..., K}.

From Lemma A.2, there exists λ ∈ RK+\{0} such that
K∑
k̃=1

xkk̃λk̃ 6= 0 for all k ∈ {1, ..., K}.

This implies that for all (θ̄i, θ̂i) ∈ K,

K∑
k̃=1

[
∑

θ−i∈Θ−i

ψ
f−1(k̃)
i (θ̂i, θ−i)pi(θ−i|θ̄i)]λk̃ =

∑
θ−i∈Θ−i

[
K∑
k̃=1

λk̃ψ
f−1(k̃)
i (θ̂i, θ−i)]pi(θ−i|θ̄i) 6= 0.

Define ψi =
K∑
k̃=1

λk̃ψ
f−1(k̃)
i for all i ∈ I. Then ψ satisfies the third requirement of this

lemma. The other two requirements are trivial because ψ is a linear combination of transfers

satisfying the two equations.

Proof of Theorem 5.1. We first claim that an interim individually rational mechanism

with ambiguous transfers (q,Φ) extracts full surplus if and only if q is ex-post efficient and∑
θ−i∈Θ−i

[ui
(
q(θ), θ

)
+φi(θ)]pi(θ−i|θi) = 0 for all i ∈ I, θi ∈ Θi, and φi ∈ Φi. The “if” direction
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is clear given expression (1). To see the “only if” direction, suppose q is inefficient or there

exists i ∈ I, θi ∈ Θi, and φ ∈ Φ such that
∑

θ−i∈Θ−i

[ui
(
q(θ), θ

)
+ φi(θ)]pi(θ−i|θi) > 0. By

individual rationality, the fact that q is a common prior, and Assumption 2.1,

−
∑
θ∈Θ

∑
j∈I

φj(σ(θ))p(θ) ≤
∑
θ∈Θ

∑
j∈I

uj
(
q(θ), θ

)
p(θ) ≤ max

q̂:Θ→A

∑
θ∈Θ

∑
j∈I

uj
(
q̂(θ), θ

)
p(θ), (6)

and strict inequality holds for at least one of the inequalities, contradicting expression (1).

Subsequently, we prove the necessity of the BDP property for full surplus extraction.

Suppose there exists i ∈ I and θ̄i, θ̂i ∈ Θ with θ̄i 6= θ̂i such that pi(·|θ̄i) = pi(·|θ̂i) and

surplus extraction can be guaranteed. Consider a private value auction environment with

one dimensional valuations satisfying θ̄i > θ̂i > θj for (j, θj) 6= (i, θ̄i) and (i, θ̂i). Note that

full surplus extraction requires i obtain the good. Then the argument in the first paragraph

and interim incentive compatibility require that

inf
φ∈Φ

∑
θ−i∈Θ−i

(
θ̄i + φi(θ̄i, θ−i)

)
pi(θ−i|θ̄i) = 0 ≥ inf

φ∈Φ

∑
θ−i∈Θ−i

(
θ̄i + φi(θ̂i, θ−i)

)
pi(θ−i|θ̄i).

The above inequality, pi(·|θ̄i) = pi(·|θ̂i), and the fact that θ̄i > θ̂i imply

inf
φ∈Φ

∑
θ−i∈Θ−i

(
θ̂i + φi(θ̂i, θ−i)

)
pi(θ−i|θ̂i) < 0,

which violates individual rationality of type-θ̂i agent i.

To demonstrate the sufficiency of the BDP property, pick an arbitrary ex-post efficient

allocation rule q. For each i ∈ I, define Φi = {−ηi + cψi,−ηi− cψi}, where ψi is defined and

proved to exist in Lemma A.3, ηi(θ) = ui(q(θ), θ) for all θ ∈ Θ, and c is no less than

max
i,θ̄i,θ̂i∈Θi,

θ̄i 6=θ̂i

∑
θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), (θ̄i, θ−i)

)
− ui

(
q(θ̂i, θ−i), (θ̂i, θ−i)

)
]pi(θ−i|θ̄i)

|
∑

θ−i∈Θ−i
ψi(θ̂i, θ−i)pi(θ−i|θ̄i)|

.

Let the set of ambiguous transfers be Φ = ×i∈IΦi. All interim individual rationality con-

straints bind because −ηi extracts agent i’s surplus and cψi has expected value of zero. To

check incentive compatibility, notice that the choice of c gives agents non-positive worst-case

expected payoffs when they misreport. Hence, Φ = ×i∈IΦi extracts full surplus.

Proof of Theorem 5.2. Necessity. Suppose there exists i ∈ I, θ̄i, θ̂i ∈ Θ such that

pi(·|θ̄i) = pi(·|θ̂i). We will establish the existence of a profile of utility functions and an

efficient allocation rule q such that q cannot be implemented via an individually rational and

budget-balanced mechanism with ambiguous transfers.
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Consider an adaptation of the utility functions constructed by Kosenok and Severinov

(2008). Let A = {x0, x1, x2}, where all agents’ payoffs of consuming the outside option x0

are zero. The payoffs for agent i and all j 6= i to consume x1 and x2 are given below with

0 < a < B.

ui
(
x1, (θi, θj)

)
uj
(
x1, (θi, θj)

)
ui
(
x2, (θi, θj)

)
uj
(
x2, (θi, θj)

)
θi = θ̄i a a a+B a-2B

θi = θ̂i 0 a a a

θi 6= θ̄i, θ̂i a a 0 a

The efficient allocation rule is q(θ) = x2 if θi = θ̂i and q(θ) = x1 elsewhere.

Suppose by way of contradiction that there exists an interim individually rational and

ex-post budget-balanced mechanism with ambiguous transfers implementing q. Denote the

set of transfers by Φ. Then from IC(θ̄iθ̂i) and IC(θ̂iθ̄i),

a+ inf
φ∈Φ

∑
θ−i∈Θ−i

φi(θ̄i, θ−i)pi(θ−i|θ̄i) ≥ a+B + inf
φ∈Φ

∑
θ−i∈Θ−i

φi(θ̂i, θ−i)pi(θ−i|θ̄i),

a+ inf
φ∈Φ

∑
θ−i∈Θ−i

φi(θ̂i, θ−i)pi(θ−i|θ̂i) ≥ 0 + inf
φ∈Φ

∑
θ−i∈Θ−i

φi(θ̄i, θ−i)pi(θ−i|θ̂i).

Recall that pi(·|θ̄i) = pi(·|θ̂i). Adding the above two inequalities gives 2a ≥ a + B, a

contradiction. Therefore, q is not implementable via an interim individually rational and

ex-post budget-balanced mechanism with ambiguous transfers.

Sufficiency. We pick an arbitrary interim individually rational and ex-post budget-

balanced transfer rule η : Θ→ Rn. According to Lemma A.3, there exists a budget-balanced

transfer rule ψ such that for all i ∈ I, truthfully revealing gives i expected values of zero and

misreporting gives her non-zero ones.

Pick any c that is no less than

max
i∈I,θ̄i,θ̂i∈Θi,

θ̄i 6=θ̂i

∑
θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), (θ̄i, θ−i)

)
+ ηi(θ̂i, θ−i)− ui

(
q(θ̄i, θ−i), (θ̄i, θ−i)

)
− ηi(θ̄i, θ−i)]pi(θ−i|θ̄i)

|
∑

θ−i∈Θ−i
ψi(θ̂i, θ−i)pi(θ−i|θ̄i)|

,

where c exists because the denominator is positive. Let M be (Θ, q, {η + cψ, η − cψ}).
Interim individual rationality of M comes from the fact that η is individually rational

and that ψ gives all truth-telling agents expected values of zero. For all i ∈ I and θ̄i, θ̂i ∈ Θi

with θ̄i 6= θ̂i, the choice of c indicates that

min{
∑

θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), (θ̄i, θ−i)

)
+ ηi(θ̂i, θ−i)± cψi(θ̂i, θ−i)]pi(θ−i|θ̄i)}
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≤
∑

θ−i∈Θ−i

[ui
(
q(θ̄i, θ−i), (θ̄i, θ−i)

)
+ ηi(θ̄i, θ−i)]pi(θ−i|θ̄i),

which further implies interim incentive compatibility of M. Ex-post budget balance of M
follows from budget balance of η and ψ. Therefore, M is an individually rational and

budget-balanced mechanism with ambiguous transfers that implements q.

Proof of Theorem 6.1. Necessity. By relabeling the indices, we assume without loss of

generality that agent 1 has distinct beliefs under θ1
1 and θ2

1, that agent 2 has distinct beliefs

under θ1
2 and θ2

2, and that L2 ≥ L1. Let θm1 , θn2 , and θ−1,2 be generic elements of Θ1, Θ2, and

Θ−1,2. We ignore θ−1,2 if N = 2. Now we construct a profile of private value utility functions

such that an efficient outcome is not implementable. This would establish the necessity of

the condition that at least N − 1 agents satisfy the BDP property.

Suppose agent 1 owns a unit of private good and all other agents are potential buyers. Let

θi represent agent i’s private value of trading, where θ1
2 > −θ1

1 > θ2
2 > −θ2

1 > ... > θL1
2 > −θL1

1

and −θL1
1 > θi > 0 for all other agent-type combinations. No trade gives all agents zero

payoffs. The efficient allocation rule q is that agent 1 should trade with agent 2 if θ1 +θ2 > 0

and not trade otherwise.

Suppose by way of contradiction that an individually rational and budget-balanced mech-

anism with ambiguous transfers, denoted by M = (q,Φ), implements q. By individual ra-

tionality, for all i ∈ I and θi, type-θi agent i’s worst-case expected utility from participation

is Uθi ≥ 0. Hence, for all φ ∈ Φ, forall i ∈ I and θi ∈ Θi,∑
θ−i∈Θ−i

pi(θ−i|θi)φi(θi, θ−i) ≥ Uθi −
∑

θ−i∈Θ−i

ui(q(θi, θ−i), (θi, θ−i))pi(θ−i|θi). (7)

Multiply each of the inequalities by pi(θi) and sum across all i and θi. By ex-post budget

balance, the left-hand side of the aggregated inequality is zero and the right-hand side,∑
m

p1(θm1 )
(
− θm1

∑
n≤m

p1(θn2 |θm1 )
)

+
∑
n

p2(θn2 )
(
− θn2

∑
m≥n

p2(θm1 |θn2 )
)

+
∑
i∈I

∑
θi∈Θi

pi(θi)Uθi , (8)

is non-positive. From IC(θ2
1θ

1
1) and IC(θ1

2θ
2
2), for all ε > 0, there exists φ1, φ2 ∈ Φ satisfying

IC(θ2
1θ

1
1) −

∑
n,θ−1−2

p1(θn2 , θ−1−2|θ2
1)φ1

1(θ1
1, θ

n
2 , θ−1,2) + ε ≥ −U2

1 + θ2
1

∑
n≤1

p1(θn2 |θ2
1),

IC(θ1
2θ

2
2) −

∑
m,θ−1−2

p2(θm1 , θ−1−2|θ1
2)φ2

2(θm1 , θ
2
2, θ−1,2) + ε ≥ −U1

2 + θ1
2

∑
m≥2

p2(θm1 |θ1
2).

In view of the assumption that p1(·|θ1
1) = p1(·|θ2

1) and p2(·|θ1
2) = p2(·|θ2

2), by adding IC(θ2
1θ

1
1)

and (7) with θi = θ1
1 and φ = φ1, adding IC(θ1

2θ
2
2) and (7) with θi = θ1

1 with θi = θ2
2 and
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φ = φ2, and letting ε go to zero, we obtain that

U2
1 ≥ U1

1 + (θ2
1 − θ1

1)
∑
n≤1

p1(θn2 |θ1
1), U1

2 ≥ U2
2 + (θ1

2 − θ2
2)
∑
m≥2

p2(θm1 |θ1
2).

By plugging the above two inequalities into expression (8), we have that (8) is no less than∑
m

p1(θm1 )
(
− θm1

∑
n≤m

p1(θn2 |θm1 )
)

+ p1(θ2
1)(θ2

1 − θ1
1)
∑
n≤1

p1(θn2 |θ1
1)

+
∑
n

p2(θn2 )
(
− θn2

∑
m≥n

p2(θm1 |θn2 )
)

+ p2(θ1
2)(θ1

2 − θ2
2)
∑
m≥2

p2(θm1 |θ1
2). (9)

In the above expression, the coefficients of θ1
1 and θ1

2 are

− p1(θ1
1)
∑
n≤1

p1(θn2 |θ1
1)− p1(θ2

1)
∑
n≤1

p1(θn2 |θ1
1) = −

(
p1(θ1

1) + p1(θ2
1)
)p1,2(θ1

1, θ
1
2)

p1(θ1
1)

< −p1,2(θ1
1, θ

1
2),

− p2(θ1
2)
∑
m≥1

p2(θm1 |θ1
2) + p2(θ1

2)
∑
m≥2

p2(θm1 |θ1
2) = −p2(θ1

2)
p1,2(θ1

1, θ
1
2)

p2(θ1
2)

= −p1,2(θ1
1, θ

1
2),

where the strict inequality follows from Assumption 2.1. Let θ1
1 and θ1

2 be sufficiently close

in absolute value and all other values θi be close to zero. Then expression (9) is positive,

contradicting 0 ≥ (8) ≥ (9). Therefore, q cannot be implemented via an individually rational

and budget-balanced mechanism with ambiguous transfers.

Sufficiency. When all agents satisfy the BDP property, the sufficiency part is proven

by Theorem 5.2. When there is exactly one agent, i, whose BDP property fails, following

Lemmas A.1 through A.3, one can prove that there exists ψ : Θ→ Rn such that

1.
∑
j∈I

ψj(θ) = 0 for all θ ∈ Θ;

2.
∑

θ−j∈Θ−j

ψj(θj, θ−j)pj(θ−j|θj) = 0 for all j ∈ I and θj ∈ Θj;

3.
∑

θ−j∈Θ−j

ψj(θ̂j, θ−j)pj(θ−j|θ̄j) 6= 0 for all j 6= i and θ̄j, θ̂j ∈ Θj satisfying θ̄j 6= θ̂j,

Notice that the third statement is different from the one in Lemma A.3, as agent i in this

theorem has identical beliefs under different types.

We construct a mechanism where agent i obtains all the surplus by truthfully reporting.

For all θ ∈ Θ and j ∈ I with j 6= i, let ηj(θ) = −uj(q(θ), θj), and ηi(θ) = −
∑
j 6=i

ηj(θ).

Pick any c that is no less than

max
j 6=i,θ̄j ,θ̂j∈Θj ,

θ̄j 6=θ̂j

∑
θ−j∈Θ−j

[uj
(
q(θ̂j, θ−j), θj

)
+ ηj(θ̂j, θ−j)]pj(θ−j|θ̄j)

|
∑

θ−j∈Θ−j
ψj(θ̂j, θ−j)pj(θ−j|θ̄j)|

.
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Let the set of ambiguous transfers be Φ = {η+ cψ, η− cψ}, which is interim individually

rational and ex-post budget-balanced. The choice of η, ψ, and c implies that for any agent

j 6= i with type θ̄j, truthfully reporting gives her zero worst-case expected payoff while lying

gives her non-positive ones. Therefore, j’s incentive compatibility constraints are satisfied.

For type-θ̄i agent i, the argument below verifies her incentive compatibility constraints:

min{
∑

θ−i∈Θ−i

[ui
(
q(θ̄i, θ−i), θ̄i

)
+
∑
j 6=i

uj
(
q(θ̄i, θ−i), θj

)
± cψi(θ̄i, θ−i)]pi(θ−i|θ̄i)}

=
∑

θ−i∈Θ−i

[ui
(
q(θ̄i, θ−i), θ̄i

)
+
∑
j 6=i

uj
(
q(θ̄i, θ−i), θj

)
]pi(θ−i|θ̄i)

≥
∑

θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), θ̄i

)
+
∑
j 6=i

uj
(
q(θ̂i, θ−i), θj

)
]pi(θ−i|θ̄i)

≥min{
∑

θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), θ̄i

)
+
∑
j 6=i

uj
(
q(θ̂i, θ−i), θj

)
± cψi(θ̂i, θ−i)]pi(θ−i|θ̄i)},

where the equality comes from the second property of ψ, the first inequality comes from

ex-post efficiency of q, and the second inequality comes from the minimization operation.

Therefore, the individually rational and budget-balanced mechanism with ambiguous

transfers implements q.

Example A.1: This example demonstrates that if N − 1 agents satisfy the BDP property,

under private value environments, an inefficient allocation rule may not be implementable

via an individually rational and budget-balanced mechanism with ambiguous transfers.

Consider a common prior p defined by p(θ3
1, θ

2
2) = 2/7, and p(θ) = 1/7 for all other θ.

Let the set of feasible allocations be A = {x0, x1, x2}. Recall that x0, the outside option, gives

both agents zero payoffs. The payoffs of x1 and x2 are presented below.

x1 θ1
2 θ2

2

θ1
1 0,0 0,0

θ2
1 2,0 2,0

θ3
1 0,0 0,0

x2 θ1
2 θ2

2

θ1
1 2,0 2,0

θ2
1 0,0 0,0

θ3
1 0,0 0,0

Consider an allocation rule q(θ) = x2 if θ1 = θ2
1, and q(θ) = x1 elsewhere. Suppose

by way of contradiction that q is implemented by a mechanism with ambiguous transfers

M = (Θ, q,Φ), where each φ ∈ Φ is a transfer or payment from agent 1 to 2. Let U1
1 denote

type-θ1
1 agent 1’s worst-case expected payoff from participation. Similarly, let U2

1 denote

type-θ2
1 agent 1’s payoff.

As IR(θ1
1) and IC(θ2

1θ
1
1) hold, for any ε > 0, there exists φ1 ∈ Φ such that

IR(θ1
1) − 0.5φ1(θ1

1, θ
1
2)− 0.5φ1(θ1

1, θ
2
2) ≥ U1

1 ,
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IC(θ2
1θ

1
1) U2

1 + ε ≥ 2− 0.5φ1(θ1
1, θ

1
2)− 0.5φ1(θ1

1, θ
2
2).

Similarly, by IR(θ2
1) and IC(θ1

1θ
2
1), for any ε > 0, there exists φ2 ∈ Φ such that

IR(θ2
1) − 0.5φ2(θ2

1, θ
1
2)− 0.5φ2(θ2

1, θ
2
2) ≥ U2

1 ,

IC(θ1
1θ

2
1) U1

1 + ε ≥ 2− 0.5φ2(θ2
1, θ

1
2)− 0.5φ2(θ2

1, θ
2
2).

We add the above inequalities pairwise and let ε go to zero. Thus we have U2
1 ≥ 2 + U1

1 and

U1
1 ≥ 2 + U2

1 . These two expressions imply 0 ≥ 4, which is a contradiction.

Proof of Proposition 6.1. By relabelling the indices, we assume without loss of general-

ity there are (βθ1)θ1 6=θ1
1
, (βθ2)θ2 6=θ2

2
∈ ∆ such that p1(·|θ1

1) =
∑
θ1 6=θ1

1

βθ1p1(·|θ1) and p2(·|θ2
2) =∑

θ2 6=θ2
2

βθ2p2(·|θ2), and

βθ1
2

p2(θ1
2)
≥ βθ2
p2(θ2)

, ∀θ2 6= θ1
2, θ

2
2. (10)

Suppose agent 1 owns a unit of private good and all others are potential buyers. For each

i ∈ I, let θi be agent i’s private value of trading, where θ1
2 > −θ1

1 > θ2
2 > −θ2

1 > ... > θL1
2 >

−θL1
1 > θi for all other θi. No trade gives all agents zero payoffs. The efficient allocation rule

q is that agent 1 should trade with 2 if θ1 + θ2 > 0 and not trade otherwise. Subsequently,

we will prove that q is not implementable, which proves the necessity of the condition.

Suppose by way of contradiction there exists an individually rational and budget-balanced

Bayesian transfer φ that implements q. Then by individual rationality and incentive com-

patibility, for all i ∈ I, θ̄i 6= θ̂i, the following inequalities hold:

IR(θ̄i)
∑
θ−i

pi(θ−i|θ̄i)φi(θ̄i, θ−i) ≥ −
∑
θ−i

ui(q(θ̄i, θ−i), θ̄i)pi(θ−i|θ̄i),

IC(θ̄iθ̂i)
∑
θ−i

pi(θ−i|θ̄i)φi(θ̄i, θ−i)−
∑
θ−i

pi(θ−i|θ̄i)φi(θ̂i, θ−i)

≥ −
∑
θ−i

ui(q(θ̄i, θ−i), θ̄i)pi(θ−i|θ̄i)−
∑
θ−i

ui(q(θ̂i, θ−i), θ̄i)pi(θ−i|θ̄i).

We choose a constant δ > 0 sufficiently large such that

δβθ1
2
p2(θ2

2)

p2(θ1
2)

≥ βθ1p1(θ1
1)

p1(θm1 )
,∀θ1 6= θ1

1. (11)

and then denote the left-hand-side term by γ. Now we compute the weighted sum of the

above individual rationality and incentive compatibility constraints where (1) the weight of

IR(θ1
1) is p1(θ1

1)(γ + 1), (2) for each θ1 6= θ1
1 the weight of IR(θ1) is p1(θ1)γ − βθ1p1(θ1

1),
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(3) the weight of IR(θ2
2) is p2(θ2

2)(γ + δ), (4) for each θ2 6= θ2
2 the weight of IR(θ2) is

p2(θ2)γ − δβθ2p2(θ2
2), (5) for each i 6= 1, 2 and θi ∈ Θi the weight of IR(θi) is pi(θi)γ, (6) for

each θ1 6= θ1
1 the weight of IC(θ1θ

1
1) is p1(θ1

1)βθ1 , (7) for each θ2 6= θ2
2 the weight of IC(θ2θ

2
2)

is δβθ2p(θ
2
2), (8) every other inequality has weight zero. From expressions (10) and (11), we

know all the weights are non-negative.

Ex-post budget balance cancels all terms containing transfers in the weighted sum and

thus the left-hand side is zero. On the right-hand side, the coefficients of θ1
1 and θ1

2 are

−(γ + 1)p(θ1
1θ

1
2) and −γp(θ1

1θ
1
2) respectively. Therefore, by choosing θ1

1 and θ1
2 sufficiently

close in absolute value and all other θi close to zero, the right-hand side of the weighted sum

is positive, a contradiction.

Lemma A.4: Given the belief system
(
pi(·|θi)

)
i∈I,θi∈Θi

, the BDP and NCP* properties hold

for agent i if for all θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i, there exists ψθ̄iθ̂i : Θ→ Rn such that,

1.
∑
j∈I

ψθ̄iθ̂ij (θ) = 0 for all θ ∈ Θ;

2.
∑

θ−j∈Θ−j

ψθ̄iθ̂ij (θj, θ−j)pj(θ−j|θj) ≥ 0 for all j ∈ I, θj ∈ Θj;

3.
∑

θ−i∈Θ−i

ψθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̄i) < 0.

Proof. By Motzkin’s theorem of the alternative, the above system has a solution if and only

if there do not exist coefficients (bθ)θ∈Θ and (aθj)j∈I,θj∈Θj ≥ 0 such that

pθ̄iθ̂i =
∑
j∈I

∑
θj∈Θj

aθjpθjθj −
∑
θ∈Θ

bθeθ. (12)

To prove this lemma, we will subsequently establish that there are coefficients (bθ)θ∈Θ

and (aθj)j∈I,θj∈Θj ≥ 0, such that expression (12) hold if and only if pi(·|θ̄i) = pi(·|θ̂i) or both

conditions in NCP* property are satisfied by (i, θ̄i, θ̂i).

To prove the “only if” direction, suppose there are coefficients (bθ)θ∈Θ and (aθj)j∈I,θj∈Θj ≥
0, such that expression (12) holds. Then,

aθipi(θjθ−i−j|θi) = bθiθjθ−i−j ,∀θi 6= θ̂i, j 6= i, θj, θ−i−j, (13)

aθ̂ipi(θjθ−i−j|θ̂i)− pi(θjθ−i−j|θ̄i) = bθ̂iθjθ−i−j , ∀j 6= i, θj, θ−i−j, (14)

aθjpj(θiθ−i−j|θj) = bθiθjθ−i−j ,∀θi, j 6= i, θj, θ−i−j. (15)

We remark that thoutghout the proof, ifN = 2, we ignore any term θ−i−j to avoid introducing

additional notation. By canceling bθ̄iθjθ−i−j in (13) and (15), we also have aθ̄i ≥ 0.

34



Case 1. Suppose aθ̃i = 0 for some θ̃i 6= θ̂i. The argument below shows that aθ̂i = 1,

aθj = 0 for all (j, θj) 6= (i, θ̂i), bθi,θj ,θ−i−j = 0 for all θi, θj, and θ−i−j, and pi(·|θ̄i) = pi(·|θ̂i).
Canceling bθ̃iθjθ−i−j in (13) and (15) yields 0 = aθ̃ipi(θjθ−i−j|θ̃i) = aθjpj(θ̃iθ−i−j|θj) for all

j 6= i, θj, θ−i−j. From Assumption 6.1, it must be the case that aθj = 0 for all j 6= i and θj.

By expression (15), last paragraph implies bθi,θj ,θ−i−j = 0 for all θi, θj, and θ−i−j. From

expression (13), we further know aθi = 0 for all θi 6= θ̂i.

By canceling bθ̂iθjθ−i−j in (14) and (15), we have aθ̂ipi(θjθ−i−j|θ̂i) − pi(θjθ−i−j|θ̄i) =

aθjpj(θ̂iθ−i−j|θj) = 0 for all θj and θ−i−j. Summing the equation across all θj and θ−i−j,

we get aθ̂i = 1 and thus pi(·|θ̄i) = pi(·|θ̂i).
Case 2. Suppose aθi > 0 for all θi 6= θ̂i. Following the symmetric argument of the

previous case, we know aθ̂i > 1 and aθj > 0 for all (j, θj) 6= (i, θ̂i). Subsequently, we will

establish that (i, θ̄i, θ̂i) satisfies both conditions in the NCP* property so that the property

fails.

Define µ ∈ ∆(Θ) by µ(θ) = bθ∑
θ̃∈Θ bθ̃

for all θ ∈ Θ. Then from expressions (13) and

(15), we know µ(·|θj) = pj(·|θj) and µ(θj) =
aθj∑
θ̃∈Θ bθ̃

> 0 for all (j, θj) 6= (i, θ̂i). Hence,

the first condition holds in the NCP* property. By canceling bθ̂iθjθ−i−j in expressions (14)

and (15), we have aθ̂ipi(θj, ·|θ̂i) = pi(θj, ·|θ̄i) + aθjpj(θ̂i, ·|θj) for all j 6= i and θj, where

aθj = µ(θj)
∑
θ̃∈Θ

bθ̃ = µ(θ̄i)
µ(θj |θ̄i)
µ(θ̄i|θj)

∑
θ̃∈Θ

bθ̃ = aθ̄i
pi(θj |θ̄i)
pj(θ̄i|θj)

. Recall aθ̄i > 0 and aθ̂i > 1. Thus by

defining C̄ = aθ̄i and Ĉ = aθ̂i , the second condition also holds in the NCP* property.

Proof of Theorem 6.2. Suppose the BDP and NCP* properties hold for all agents. Ac-

cording to Lemma A.4, for all i ∈ I and θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i, there exists ψθ̄iθ̂i : Θ→ Rn,

such that the three requirements are satisfied.

Let η be any interim individually rational and ex-post budget-balanced transfer rule.

Define Φ = {η, η + cψθ̄j θ̂j : j ∈ I, θ̄j, θ̂j ∈ Θj, θ̄j 6= θ̂j}, where c is sufficiently large such that

for all j ∈ I and θ̄j, θ̂j ∈ Θj with θ̄j 6= θ̂j, the following term is negative:∑
θ−j∈Θ−j

[uj(q(θ̂j, θ−j), (θ̄j, θ−j))−uj(q(θ̄j, θ−j), (θ̄j, θ−j))+ηj(θ̂j, θ−j)−ηj(θ̄j, θ−j)+cψ
θ̄j θ̂j
j (θ̂j, θ−j)]pj(θ−j|θ̄j).

For any type-θ̄i agent i, the inequality below shows that misreporting θ̂i is not profitable:

min
φ∈Φ

∑
θ−i∈Θ−i

[ui(q(θ̄i, θ−i), (θ̄i, θ−i)) + η(θ̄i, θ−i) + φi(θ̄i, θ−i)]pi(θ−i|θ̄i)

=
∑

θ−i∈Θ−i

[ui(q(θ̄i, θ−i), (θ̄i, θ−i)) + η(θ̄i, θ−i)]pi(θ−i|θ̄i)

≥min
φ∈Φ

∑
θ−i∈Θ−i

[ui(q(θ̂i, θ−i), (θ̄i, θ−i)) + η(θ̂i, θ−i) + φi(θ̂i, θ−i)]pi(θ−i|θ̄i),
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where the equality follows from the second and third requirements of Lemma A.4, and the

inequality comes from the choice of c. Interim individual rationality and ex-post budget

balance follow from corresponding properties of η and each φ ∈ Φ.

Lemma A.5: Given beliefs
(
pi(·|θi)

)
i∈I,θi∈Θi

that are not generated by a common prior, if

the BDP property holds for all agents, then the NCP* property holds for at least N−1 agents.

Proof. Suppose by way of contradiction that the BDP property holds for all agents, and that

(i, θ̄i, θ̂i 6= θ̄i) and (j 6= i, θ̄j, θ̂j 6= θ̄j) satisfy the two conditions in the NCP* property so

that the property fails for i and j. From the two-case argument of Lemma A.4, there exist

coefficients (aθk)k∈I,θk∈Θk > 0 where aθ̂i > 1, (bθ)θ∈Θ, (cθk)k∈I,θk∈Θk > 0 where cθ̂j > 1, and

(dθ)θ∈Θ such that pθ̄iθ̂i =
∑
k∈I

∑
θk∈Θk

aθkpθkθk−
∑
θ∈Θ

bθeθ, and pθ̄j θ̂j =
∑
k∈I

∑
θk∈Θk

cθkpθkθk−
∑
θ∈Θ

dθeθ.

Thus, the following equations hold. Note that we ignore θ−i−j if N = 2.

aθipi(θj, θ−i−j|θi) = bθi,θj ,θ−i−j ,∀θi 6= θ̂i,∀θj, θ−i−j,

aθ̂ipi(θj, θ−i−j|θ̂i)− pi(θj, θ−i−j|θ̄i) = bθ̂i,θj ,θ−i−j ,∀θj, θ−i−j

aθjpj(θi, θ−i−j|θj) = bθi,θj ,θ−i−j ,∀θi, θj, θ−i−j,

cθipi(θj, θ−i−j|θi) = dθi,θj ,θ−i−j ,∀θi, θj, θ−i−j,

cθjpj(θi, θ−i−j|θj) = dθi,θj ,θ−i−j ,∀θj 6= θ̂j, ∀θi, θ−i−j,

cθ̂jpj(θi, θ−i−j|θ̂j)− pj(θi, θ−i−j|θ̄j) = dθi,θ̂j ,θ−i−j ,∀θi, θ−i−j.

Canceling all bθi,θj ,θ−i−j , dθi,θj ,θ−i−j , and pj(θi, θ−i−j|θj) in above equations yields:

aθipi(θj, θ−i−j|θi)
aθj

=
cθipi(θj, θ−i−j|θi)

cθj
,∀θi 6= θ̂i, θj 6= θ̂j, and θ−i−j,

aθ̂ipi(θj, θ−i−j|θ̂i)− pi(θj, θ−i−j|θ̄i)
aθj

=
cθ̂ipi(θj, θ−i−j|θ̂i)

cθj
,∀θj 6= θ̂j,∀θ−i−j, (16)

aθipi(θ̂jθ−i−j|θi)
aθ̂j

=
cθipi(θ̂jθ−i−j|θi)

cθ̂j
+
cθipi(θ̄jθ−i−j|θi)

cθ̂jcθ̄j
,∀θi 6= θ̂i,∀θ−i−j,

aθ̂ipi(θ̂jθ−i−j|θ̂i)− pi(θ̂jθ−i−j|θ̄i)
aθ̂j

=
cθ̂ipi(θ̂jθ−i−j|θ̂i)

cθ̂j
+
cθ̂ipi(θ̄jθ−i−j|θ̂i)

cθ̂jcθ̄j
,∀θ−i−j. (17)

By summing each of the four equation accross all θ−i−j ∈ Θ−i−j, we have

aθi : cθi = aθj : cθj = (aθ̂i − 1) : cθ̂i = aθ̂j :
cθ̂jcθ̄j

cθ̄j + 1
,∀θi 6= θ̂i, θj 6= θ̂j.

Plugging this relationship back into (16) and (17) yields pi(θj, θ−i−j|θ̄i) = pi(θj, θ−i−j|θ̂i)
for all θj 6= θ̂j and θ−i−j, and pi(θ̂jθ−i−j|θ̂i) = pi(θ̂jθ−i−j|θ̄i). Hence, pi(·|θ̄i) = pi(·|θ̂i), a

contradiction.
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Lemma A.6: Let q be an efficient allocation rule under a private value environment. For any

i ∈ I, Θ̃i ⊆ Θi with |Θ̃i| ≥ 2, and distribution π ∈ ∆(Θ−i), there exist values {Uθi}θi∈Θ̃i
≥ 0

such that Uθi − Uθ′i ≥
∑

θ−i∈Θ−i

[ui(q(θ
′
i, θ−i), θi)− ui(q(θi, θ−i), θi)]π(θ−i) for all θi, θ

′
i ∈ Θ̃i.

Proof. Let a loop be a sequence (θ1
i , θ

2
i , ..., θ

K
i ) in Θ̃i with length K ≥ 2 and θ1

i = θKi . As

q is ex-post efficient, ui(q(θ
k+1
i , θ−i), θ

k+1
i ) +

∑
j 6=i

uj(q(θ
k+1
i , θ−i), θj) ≥ ui(q(θ

k
i , θ−i), θ

k+1
i ) +∑

j 6=i

uj(q(θ
k
i , θ−i), θj) for all k = 1, ..., K − 1 and θ−j ∈ Θ−j. Summing the inequalities across

k = 1, ..., K − 1, we obtain that
K−1∑
k=1

[ui(q(θ
k
i , θ−i), θ

k+1
i )− ui(q(θki , θ−i), θki )] ≤ 0. This is the

“cyclical motonicity” condition is the literature.

From Theorem 1 of Rochet (1987), we know cyclical monotonicity is suffcient for the

existence of ex-post incentive compatible transfers. Namely, for each θ−i ∈ Θ−i and loop

(θ1
i , θ

2
i , ..., θ

K
i ) in Θ̃i, if

K−1∑
k=1

[ui(q(θ
k
i , θ−i), θ

k+1
i ) − ui(q(θ

k
i , θ−i), θ

k
i )] ≤ 0, then there exists a

transfer rule ti(·, θ−i) such that ui(q(θi, θ−i), θi) + ti(θi, θ−i) ≥ ui(q(θ
′
i, θ−i), θi) + ti(θ

′
i, θ−i) for

θi, θ
′
i ∈ Θ̃i. Let C be a constant sufficiently large such that t̃i(θ) = ti(θ) + C ≥ 0 for all

θ ∈ Θ̃i ×Θ−i. By defining Uθi =
∑

θ−i∈Θ−i

t̃i(θi, θ−i)πi(θ−i) for all θi ∈ Θ̃i, we have established

the desired result.

Proof of Theorem 6.3. Suppose there do not exist i 6= j such that the BDP property fails

for i and the NCP* property fails for j. Then either of the following is true. Case 1: there

are at least N − 1 agents satisfying both the BDP and NCP* properties. Note by Lemma

A.5, a special situation in this case is that all agents satisfy the BDP property. Case 2: all

agents satisfy the NCP* property.

Case 1. Suppose there are at least N − 1 agents satisfying both the BDP and NCP*

properties. By Lemma A.4, there is I ′ ⊆ I with |I ′| ≥ N − 1 such that for all i ∈ I ′ and

θ̄i 6= θ̂i, there exists ψθ̄iθ̂i : Θ→ Rn, such that the four requirements are satisfied.

Pick an agent i ∈ I, where {i} = I\I ′ if I\I ′ is a singleton, and i ∈ I is arbitrary if

I\I ′ = ∅. As in Theorem 6.1, let η be an interim individually rational and ex-post budget-

balanced transfer rule such that agent i obtains all the surplus. Define Φ = {η}∪{η+cψθ̄j θ̂j :

j ∈ I with j 6= i, θ̄j, θ̂j ∈ Θj with θ̄j 6= θ̂j}, where c is sufficiently large such that for all j ∈ I
with j 6= i and θ̄j, θ̂j ∈ Θj with θ̄j 6= θ̂j,

0 ≥
∑

θ−j∈Θ−j

[uj(q(θ̂j, θ−j), θ̄j)− uj(q(θ̂j, θ−j), θ̂j) + cψ
θ̄j θ̂j
j (θ̂j, θ−j)]pj(θ−j|θ̄j).
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For agent j 6= i with type θj, truthfully reporting gives her a worst-case expected utility

level of zero because her worst transfer rule, η, extracts all her surplus. Thus, j’s individual

rationality condition binds. The choice of c implies that misreporting cannot give her a

positive worst-case expected utility. Therefore, her incentive compatibility condition hold.

The type-θ̄i agent i obtains a worst-case expected utility of min
φ∈Φ

∑
θ−i∈Θ−i

[ui(q(θ̄i, θ−i), θ̄i) +

φi(θ̄i, θ−i)]pi(θ−i|θ̄i) =
∑

θ−i∈Θ−i

[ui(q(θ̄i, θ−i), θ̄i) +
∑
j 6=i

uj(q(θ̄i, θ−i), θj)]pi(θ−i|θ̄i) ≥ 0 by truth-

fully reporting. By ex-post efficiency of q, it is weakly higher than
∑

θ−i∈Θ−i

[ui(q(θ̂i, θ−i), θ̄i) +∑
j 6=i

uj(q(θ̂i, θ−i), θj)]pi(θ−i|θ̄i) for all θ̂i 6= θ̄i, , an upper bound of the worst-case expected

payoff of misreporting θ̂i, min
φ∈Φ

∑
θ−i∈Θ−i

[ui(q(θ̂i, θ−i), θ̄i) + φi(θ̂i, θ−i)]pi(θ−i|θ̄i). Individual ra-

tionality and ex-post budget balance are easy to verify. Therefore, the individually rational

and budget-balanced mechanism with ambiguous transfers implements q.

Case 2. Suppose all agents satisfy the NCP* property. For any j ∈ I, let Pj be the

partition of Θj such that pj(·|θj) = pj(·|θ′j) if and only if θj, θ
′
j are in the same Θ̃j ∈ Pj. For

each Θ̃j with |Θ̃j| ≥ 2 and θj ∈ Θ̃j, define Uθj according to Lemma A.6. For a singleton

Θ̃j ∈ Pj and {θj} = Θ̃j, define Uθj = 0.

We will demonstrate that for each i and θ̄i 6= θ̂i, the following system has a solution φθ̄iθ̂i .∑
θ−j∈Θ−j

φθ̄iθ̂ii (θ̄i, θ−i)pi(θ−i|θ̄i) = Uθ̄i −
∑

θ−i∈Θ−i

ui(q(θ̄i, θ−i), θi)pi(θ−i|θ̄i),∑
θ−j∈Θ−j

φθ̄iθ̂ij (θj, θ−j)pj(θ−j|θj) ≥ Uθj −
∑

θ−j∈Θ−j

uj(q(θj, θ−j), θj)pj(θ−j|θj), ∀(j, θj) 6= (i, θ̄i),

−
∑
j∈I

φθ̄iθ̂ij (θ) = 0,∀θ ∈ Θ,

−
∑

θ−i∈Θ−i

φθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̄i) ≥ −Uθi +
∑

θ−i∈Θ−i

ui(q(θ̂i, θ−i), θi)pi(θ−i|θ̄i).

Suppose by way of contradiction that the system does not have a solution. By a theorem

of the alternative, there exist coefficients aθ̄i , (aθj)(j,θj) 6=(i,θ̄i) ≥ 0, (bθ)θ∈Θ, and γθ̄iθ̂i ≥ 0 such

that the weighted sum of left-hand sides of the expressions are cancelled and the weighted

sum of right-hand sides is positive.

Suppose γθ̄iθ̂i = 0. Following the argument of Lemma A.4, we know (aθj)j∈I,θj∈Θj > 0

and (bθ)θ∈Θ 	 0. Define µ(θ) = bθ∑
θ̃∈Θ bθ̃

for all θ, which is a common prior, a contradiction.

If γθ̄iθ̂i > 0, in view of Lemma A.4 and the fact that the NCP* property holds for

all agents, we know: (1) pi(·|θ̄i) = pi(·|θ̂i), (2) among all the coefficients, aθ̂i = γθ̄iθ̂i > 0
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and everything else is zero. According to Lemma A.6, the choice of Uθ̄i and Uθ̂i satisfies

Uθ̂i −Uθ̄i +
∑

θ−i∈Θ−i

[ui(q(θ̂i, θ−i), θ̄i)−ui(q(θ̄i, θ−i), θ̄i)]pi(θ−i|θ̄i) ≤ 0. Hence, the weighted sum

of the right-hand side is nonpositive, a contradiction.

Therefore, for each i, θ̄i 6= θ̂i, the system has a solution φθ̄iθ̂i . Let the set of ambiguous

transfers be Φ = {φθ̄iθ̂i ,∀i, θ̄i, θ̂i ∈ Θi, θ̄i 6= θ̂i}. The interim individually rational and expost

budget-balanced mechanism with ambiguous transfers implements q.

Example A.2: This example shows that an inefficient allocation rule may not be imple-

mentable via an interim individually rational and ex-post budget-balanced mechanism with

ambiguous transfers in a private value environment without a common prior.

Consider the same feasible outcomes and payoffs as in Example A.1 except we do not have

θ3
1 and θ3

2 here. The beliefs satisfy p1(θ1
2|θ1

1) = 0.6, p1(θ1
2|θ2

1) = 0.4, p2(θ1
1|θ1

2) = 0.75, and

p2(θ1
1|θ2

2) = 0.25. Let an inefficient allocation rule q be q(θ) = x1 if θ1 = θ1
1 and q(θ) = x2

if θ1 = θ2
1. Suppose by way of contradiction that there exists a mechanism with ambiguous

transfers M = (Θ, q,Φ) implementing q. Hence, for all ε > 0, there exist transfer rules

(φk)k∈{1,2} (payments from agent 1 to 2) and utility levels (Uθi)i∈N,θi∈Θi ≥ 0, such that

IR(θ1
1) 0− 0.6φ1(θ1

1, θ
1
2)− 0.4φ1(θ1

1, θ
2
2) ≥ U1

1 ,

IR(θ2
1) 0− 0.4φ1(θ2

1, θ
1
2)− 0.6φ1(θ2

1, θ
2
2) ≥ U2

1 ,

IR(θ1
2) 0 + 0.75φ1(θ1

1, θ
1
2) + 0.25φ1(θ2

1, θ
1
2) ≥ U1

2 ,

IR(θ2
2) 0 + 0.25φ1(θ1

1, θ
2
2) + 0.75φ1(θ2

1, θ
2
2) ≥ U2

2 ,

IC(θ1
1θ

2
1) U1

1 + ε ≥ 2− 0.6φ1(θ2
1, θ

1
2)− 0.4φ1(θ2

1, θ
2
2),

and

IR(θ1
1) 0− 0.6φ2(θ1

1, θ
1
2)− 0.4φ2(θ1

1, θ
2
2) ≥ U1

1 ,

IR(θ2
1) 0− 0.4φ2(θ2

1, θ
1
2)− 0.6φ2(θ2

1, θ
2
2) ≥ U2

1 ,

IR(θ1
2) 0 + 0.75φ2(θ1

1, θ
1
2) + 0.25φ2(θ2

1, θ
1
2) ≥ U1

2 ,

IR(θ2
2) 0 + 0.25φ2(θ1

1, θ
2
2) + 0.75φ2(θ2

1, θ
2
2) ≥ U2

2 ,

IC(θ2
1θ

1
1) U2

1 + ε ≥ 2− 0.4φ2(θ1
1, θ

1
2)− 0.6φ2(θ1

1, θ
2
2).

Multiply each inequality in the first group by 2.5, 8, 2, 4, and 4.5 respectively, multiply the

second group by 8, 2.5, 4, 2, and 4.5 respectively, add them up, and let ε go to zero. We obtain

0 ≥ 6U1
1 +6U2

1 +6U1
2 +6U2

2 +18 ≥ 18, which is a contradiction. Hence, q is not implementable

via ambiguous transfers.
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A.2 Including agents without private information

In this subsection, we relax the assumption that |Θi| ≥ 2 for all i ∈ I. Denote the set of all

agents with at least two types by Ĩ, which has a cardinality of Ñ . An agent in I\Ĩ has only

one type and thus she cannot lie. We claim that all theorems of this paper hold if Ñ ≥ 2,

i.e., at least two agents have private information.

To see why including agents without private information may be interesting, consider

two consumers with unknown values paying for producing a costly public project. In this

example Ĩ = {1, 2} and I = {1, 2, 3}, where 3 is interpreted as a producer whose payoff

(profit) is the payments of 1 and 2 minus the cost of production. By efficiency and budget

balance, two consumers’ aggregated utility from the project minus the cost of production

should be maximized.

We demonstrate the modification needed for Theorem 6.3 as an example. In Lemma

A.4, we replace all I with Ĩ and all N with Ñ . Let η be a transfer rule such that agent

i obtains all the surplus of N agents, where {i} = Ĩ\I ′ if Ĩ\I ′ is a singleton and i ∈ I

can be arbitrary if Ĩ\I ′ = ∅. For any j ∈ Ĩ with j 6= i and θ̄j 6= θ̂j, let ψ
θ̄j θ̂j
k (θ) = 0 for

all θ and k ∈ I\Ĩ. Then one can follow Theorem 6.3 to construct ambiguous transfers.

Incentive compatibility of agents in Ĩ is achieved in the same way as the original proof. We

obtain incentive compatibility of all other agents for free as each of them has only one type.

Individual rationality and budget balance follow from the respective properties of η and ψθ̄j θ̂j

for all j ∈ Ĩ with j 6= i and θ̄j, θ̂j ∈ Θj with θ̄j 6= θ̂j.
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