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Abstract

By integrating frictional matching into a neoclassical framework of investment

by firms, this paper analyzes dynamic sorting between capital and worker skills in

the constrained social optimum. With post-match investment, strong complementar-

ity between capital and skills in production induces the socially efficient pattern of

sorting to be negative at the time of a match, but positive eventually. Because the

sorting pattern in a match reverses over time, the time profile of labor productivity is

steeper for a high skill than for a low skill, and the difference in productivity between

skills increases over time. Among any cohort of workers who become employed at

the same time, the variance in labor productivity increases over time. There is also

dispersion in labor productivity within each skill. The calibrated model shows that

sorting is positive on average and that dispersion in labor productivity is significant

both between skills and within each skill.
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1. Introduction

A cornerstone of the neoclassical theory is a production function in which capital and labor

are complementary with each other. With such complementarity, social efficiency requires

more capital to be allocated to workers with higher skills. In the terminology of matching

or assignment, capital and worker skills should have positive assortative matching (PAM)

with each other. This is the result when there are no matching frictions (Becker, 1973).

In the presence of matching frictions, neither is PAM necessarily an equilibrium outcome

(Shimer and Smith, 2000), nor does PAM necessarily maximize social welfare (Shi, 2001,

2005). Because matching frictions are significant in the labor market, as evidenced by

the existence of persistent unemployment, the failure of PAM casts serious doubt on the

neoclassical theory of production.1 The objective of this paper is to examine how post-

match investment by firms can correct the failure of PAM between capital and labor.

I formulate the dynamic sorting problem and analyze the social optimum constrained by

matching frictions. Moreover, I calibrate the model to analyze the quantitative implications

of dynamic sorting on the time profile of worker productivity and inequality.

The potential inefficiency of PAM in the presence of matching frictions arises from a

tradeoff between the utilization and the productivity of workers. PAM increases productiv-

ity, but reduces the utilization of high skills. The reason is that the vacancy cost increases

in the capital stock, as a firm has to put some of the capital in place before hiring a worker.

When each vacancy has a higher capital stock, only a smaller number of vacancies can be

created. If the vacancy cost increases sufficiently in the capital stock, PAM can imply

a lower matching rate for high-skill workers. In this case, negative assortative matching

(NAM) can increase social welfare by creating a large number of vacancies, each with a

low capital stock, to match with high-skill workers.

This intuitive explanation applies to the sorting pattern at the time of a match. If the

firm type is permanent or a fixed effect, as assumed in the literature, then this sorting

1A growing empirical literature has been investigating the extent of PAM in the data. While some have

found little evidence for PAM between workers and firms (e.g., Abowd et al., 1999), others have found

strong evidence for PAM (e.g., Hagedorn et al., 2017).
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pattern will be preserved in the entire duration of a match.2 Although some dimensions of

the firm type can be permanent, the capital stock a firm allocates to a worker is unlikely

to be one of them. Hiring a worker is only the beginning of the production process. After

the hiring, a firm can invest to increase the capital stock to change the sorting pattern.

The average sorting pattern over time may be opposite to the assignment at the time

of a match. Therefore, to understand dynamic sorting between capital and labor, it is

necessary to integrate post-match investment by firms into a model of frictional matching.

Moreover, such an integrated model can be useful for understanding heterogeneity in the

earnings profile between skills and inequality within each skill.

Section 2 describes such an integrated model. Workers are heterogeneous in a perma-

nent and observable type, called the skill. All firms have the same production technology

to combine a worker with capital to produce output. Capital and skills are complementary

in production. Productivity of a worker is measured by net output, defined as output in

a match minus the rental cost of capital. The rental market for capital is competitive

and frictionless, but the labor market has matching frictions. Firms can create vacancies

with different capital stocks to target different skills, i.e., to direct workers’ search. The

vacancy cost increases in the initial capital stock for the job. Once a vacancy is filled, the

firm chooses investment to adjust the capital stock. The adjustment cost is increasing and

convex in investment, as in the neoclassical theory (e.g., Lucas, 1967, Gould, 1968). An

employed worker separates from a match into unemployment at an exogenous rate. To

focus on dynamic sorting inside a firm, I abstract from on-the-job search that generates

dynamic sorting of workers across firms.3

In section 3, I characterize the socially efficient allocation chosen by the planner con-

strained by the same matching frictions as in the market. The social welfare function is the

sum of expected surpluses in the economy. For unemployed workers, the planner chooses

the number of vacancies and the capital stock for each vacancy to target each skill. The

2For a survey on sorting models, see Chade et al. (2017). For a list of papers on identifying sorting in

the data, see Hagedorn et al. (2017).
3In another paper (Shi, 2018), I have incorporated on-the-job search into a model with post-match

investment, but abstracted from worker heterogeneity.
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choice of the number of vacancies is equivalent to the choice of a matching rate for each

skill level of unemployed workers. The capital stock chosen for a vacancy determines the

initial assignment of capital to the skill. For each employed worker, the planner chooses

investment and, hence, the dynamic path of the capital stock in the match.

Post-match investment affects the assignment in all stages, including the initial assign-

ment. Specifically, post-match investment increases the importance of the matching rate

relative to PAM in the initial assignment. When investment is possible, the social opti-

mum can increase the capital stock for a high skill in the future to seize the benefit of the

complementarity between capital and the skill. This option reduces the need for PAM at

the time of hiring. The higher is investment expected to be, the larger is the gain from

employing a high skill quickly, and the lower is the initial capital stock assigned to match

with a high skill. Of course, investment is endogenous. Post-match investment is likely to

be higher if capital and the skill are more complementary with each other. Thus, strong

complementarity increases the likelihood for the initial assignment to be NAM, which is

opposite to the result in sorting models without post-match investment.

Post-match investment follows dynamics described in a macroeconomic textbook. Given

the worker skill in the match and the initial assignment, there is a unique stable saddle

path of the capital stock that converges asymptotically to the final assignment. The final

assignment is PAM, because it equates the marginal productivity of capital to the rental

rate of capital. Convergence to the final assignment is slower if the marginal cost of ad-

justment increases more sharply in investment or if the marginal productivity of capital

diminishes less sharply in capital.

The social optimum yields interesting predictions on the time profile and the distribu-

tion of labor productivity. Suppose that capital and the skill are strongly complementary

so that the initial assignment is NAM. Relative to a low skill, a high skill has a lower capital

stock initially. Because the final assignment is PAM, the path of the capital stock for a

high skill will eventually surpass that for a low skill. Thus, the time profile of net output

is steeper for a high skill than for a low skill. The assignment of capital to labor reduces
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dispersion in net output between skills initially, but amplifies such dispersion eventually.

There is also dispersion in net output within each skill. For the same skill, the longer has

a worker been employed, the higher is the capital stock, and the higher is net output of

the worker. The extent of sorting between capital and skill depends on this distribution. I

examine two notions of PAM: positive assortative matching according to the distribution

(PAM-D) and according to the mean of capital stocks (PAM-M) assigned to each skill.

Section 4 provides the conditions for each notion of PAM to hold.

To analyze the quantitative implications of the model, I calibrate the model in section

5. With the calibrated parameters, the initial assignment has NAM, and the matching rate

increases in the skill. The time paths of capital stocks assigned to different skills cross each

other over time quickly, in less than 9 months. Despite NAM at the beginning of a match,

net output is higher for a high skill than for a low skill throughout the match. Moreover,

the difference in net output between skills increases over time as a result of investment.

Thus, for any cohort of workers who become employed at the same time, the variance in

net output increases over time. The result that a higher skill has a steeper profile of net

output over time is consistent with the empirical evidence that the heterogeneous slope of

the earnings profile is an important source of earnings inequality over the life cycle (see

Guvenen, 2007). The fanning-out of net output over time between skills is consistent with

the evidence that the variance in earnings among workers increases over the life cycle (e.g.,

Deaton and Paxson, 1994, Guvenen, 2007).

In the calibrated model, the mean of the capital stock increases in the skill, although

the initial assignment is NAM. This result of PAM-M illustrates concretely that ignoring

post-match investment or treating the firm type as a fixed effect leads to a wrong conclusion

about the sorting pattern in a dynamic economy. In this regard, it is useful to note that

the mean of the capital stock for each skill is substantially lower than the level in the final

assignment, because exogenous separation terminates a match before the capital stock gets

close to the final level. This means that the model’s behavior is quantitatively different

from that of a neoclassical model without matching frictions. Nevertheless, convergence

toward the final state predicted by the neoclassical model exerts a strong force on the mean
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of the capital stock assigned to each skill.

The model generates significant inequality in net output within each skill. Weighted

by the employment share of each skill, the average of the coefficient of variation in net

output within a skill is 0226. The mean-min ratio, a measure of inequality proposed by

Hornstein et al. (2011), is 1769 in net output within a skill. Such within-group inequality

is comparable to the one observed in the U.S. data but much higher than in most search

models (see Hornstein et al., 2011).

There is a large literature on sorting originated in Becker (1973). As mentioned earlier

in this Introduction, this literature treats the firm type as a fixed effect and focuses on

sorting at the time of a match. Also, a small number of recent papers (e.g., Lise and Robin,

2017) have started to examine dynamic sorting of workers across firms through on-the-job

search. They, too, assume that the firm type is a fixed effect. In contrast, in this paper,

the capital stock is an endogenous type of a firm. The main contribution of this paper

is to integrate frictional sorting into the neoclassical framework with investment by firms

to examine how post-match investment affects dynamic sorting between capital and the

worker skill. As summarized above, this integration yields novel results on the pattern of

dynamic sorting, the time profile of labor productivity, and dispersion in labor productivity

both between skills and within each skill.

In the literature, some papers have examined the effect of pre-match investment on

sorting, e.g., Burdett and Coles (2001), Peters and Siow (2002). Pre-match investment is

intended to increase the probability of matching with the desired type. As such, pre-match

investment tends to increase the likelihood of PAM at the time of a match. In contrast,

post-match investment is intended to increase productivity within a match, and it tends

to make the initial assignment NAM. Moreover, the literature on pre-match investment fo-

cuses on the externalities that may or may not be internalized by the equilibrium. Instead,

I analyze the constrained social optimum.4

4This paper is related to the literature on directed search, e.g., Peters (1991), Montgomery (1991),

Moen (1997), Julien et al. (2000), and Burdett, Shi, Wright (2001). For the use of directed search in

sorting models, see Shi (2001, 2002, 2005) and Eeckhout and Kircher (2010).
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2. The Model

2.1. Model Environment

Time is continuous. There is a unit measure of workers whose time discount rate is  ∈
(0∞). Workers differ in an exogenous type , which lies in a compact set H with minH =
  0 and maxH =   ∞. The cumulative distribution function of  is . The
measure of firms is determined by competitive entry of vacancies. Firms are homogeneous

ex ante but become heterogeneous ex post in the capital stock, . A firm needs one

worker, as in most models of labor market search. I refer to  as the worker skill, to  as

a firm’s (endogenous) type, and to a match between a job with the capital stock  and

a skill- worker as a ( ) match. In a ( ) match, the output flow is ̃ ( ). The

output function ̃ is twice differentiable, strictly increasing and concave in  and , with

̃ (0 ) =  ( 0) = 0, ̃1 (0 ) = ̃2 ( 0) = ∞, and ̃1 (∞ ) = ̃2 (∞) = 0, where

the subscripts indicate partial derivatives. In addition, assume that  and  are strictly

complementary with each other in ̃ ; that is, ̃12 ( )  0.

A firm rents capital from the rest of the world at a constant rental rate . Net output in

a ( ) match is defined as  ( ) = ̃ ( )−, and is referred to as labor productivity in
the match. For each , assume that there is a unique final stock of capital, ∗ () ∈ (0∞),
such that 1 (

∗ ) = 0 and  (∗ )  0. Denote ∗ () =  (∗ ()  ). The final stock is

the optimal capital stock in the neoclassical theory with a frictionless labor market. For

an unemployed worker, home production is  ≥ 0, which is constant over time.5

A firm chooses the capital stock dynamically. At the time of creating a job, a firm

can choose any capital stock  for a vacancy but must rent capital in advance for the

vacancy. The flow cost of a vacancy, denoted as  (), includes both the rental cost of

capital and other costs of maintaining the vacancy. The vacancy cost satisfies 0 ()  0

and 00 ()  0 for all   0, and  (0) = 0. The assumption 0 ()  0 is easily satisfied

since the vacancy cost includes the rental cost of capital, which increases linearly in . The

assumption 00 ()  0 is critical for the analysis. It is justified by the intuitive reasoning

5The qualitative results are similar if home production depends on , provided that 2 ( )− 0 ()  0.
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that a firm is unlikely to give a vacancy the same amount of capital as the long-run level of

capital for a filled job. Instead, a firm is likely to fill a vacancy at a relatively low capital

stock and then invest to build up the capital stock. The assumption 00 ()  0 delivers

this intuitive outcome naturally.

Once a vacancy is filled, the match generates output. A firm can adjust the capital

stock by undertaking investment, denoted as . The capital stock evolves according to

d ()

d
=  (2.1)

In addition to renting the required addition of capital, a firm must incur an adjustment

cost for investment. In terms of the final good, the adjustment cost is  (), which satisfies

 (∞) = ∞,  () = 0 () = 0 for all  ≤ 0, 0 ()  0 for all   0, and 00 ()  0

for all  ≥ 0. These assumptions are standard in the neoclassical theory of investment,
except  () = 0 () = 0 for all   0. These exceptions are imposed to focus on capital

accumulation instead of decumulation, because they imply that reducing the capital stock

bears no adjustment cost.6 With the adjustment cost, a firm can adjust the capital stock of

an existing job only smoothly, not because additional capital is not available but because it

is costly to put new capital into an existing job. This process contrasts to vacancy creation,

where the capital stock can be changed to any amount instantaneously.

Investment is perfectly reversible, because a firm can reduce the capital stock to 0 at

no cost and return all capital to the owner at the full value. However, investment is only

partially transferable between jobs. To move capital from one job to another filled job, a

firm must incur the adjustment cost at the destination. To move capital from one job to

a vacancy, a firm must incur the vacancy cost. In both cases, moving capital between two

jobs directly is equivalent to moving capital indirectly through the lender of capital.7

Unemployed workers search for jobs. Firms can direct workers’ search by offering a

specific capital stock and matching rate to searchers of each skill. The searchers of the

same skill and the vacancies targeting them form a submarket. In any submarket where

6The assumption is not activated in the social optimum, where the capital stock increases over time.
7Under such partial transferability of capital between jobs, a firm can be interpreted alternatively as a

collection of independent jobs, as in most search models of labor.
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the matching rate for a searcher is , the number of vacancies per searcher is  (), and

the matching rate for a vacancy is  () = 

()
. The function  () summarizes matching

frictions and is implied by a matching function. Precisely, if the matching rate function

for a searcher is  (), then  () is the inverse function of  . Assume:8

0 ()  ()


 0 and 00 ()  0 for all   0

 (0) = 0 0 (0) ∈ (0∞)  and lim→∞
()


=∞

Denote  =
0()
()

( 1).

A match separates exogenously at a rate  ∈ (0∞), which makes the worker unem-
ployed. A firm can recover the capital at a vacant job fully and return it to the owner.

2.2. Planner’s Problem

The social planner chooses job search for unemployed workers and post-match investment

for firms to maximize the sum of social values, subject to search frictions and the process

(2.1). To describe the planner’s problem, let  ( ) be the social value of a ( ) match,

and  () the social value of an unemployed worker of skill . Focus on the steady state

where the value functions change over time only when  changes. Because a worker’s skill

and home production are constant over time,  () is constant over time.

For unemployed workers, the planner directs each skill to search in a particular sub-

market where the vacancies have a particular capital stock. Consider the submarket for

skill- searchers. Let  be the capital stock for each vacancy and  the the matching rate

for a searcher. Given the matching function, the choice of  translates into a number of

vacancies per searcher,  (). Each vacancy incurs a flow cost  (). Because a searcher of

skill  finds a match at the rate  and each match ( ) yields the social value  ( ), the

expected surplus of the match is  [ ( )−  ()]. Deducting the vacancy cost from this

expected surplus yields the expected social surplus of search. The socially effect choices

( ) maximize the expected social surplus of search and yields the following Bellman

8Since  ( ()) =  for all , the assumptions on  () are equivalent to the following assumptions on

 (): 0   0 ()   ()


and  00 ()  0 for all   0,  (0) = 0,  0 (0) ∈ (0∞), and lim→∞

 ()


= 0.
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equation for  ():

 () =  +max
()

{ [ ( )−  ()]−  ()  ()}  (2.2)

The optimal choices are given by the policy functions, ( ()   ()). The function  de-

scribes the initial assignment of capital to skills at the time of a match.

In a new match between a firm and a skill- worker, the capital stock is  (0) =  ().

Suppose that the match has lasted for a length of time  , resulting in a capital stock  ().

At  , the planner chooses the path of investment, { ()}≥ , to maximize the social value
of the match. At any  ≥  , the benefit of investment  () is the increase in the social value

 ( ()  ) resulting from a higher capital stock. The cost of investment is  ( ()). Thus,

for any  ≥  , investment maximizes the return on investment and yields the following

Bellman equation for  ( ()  ):

( + ) ( ()  ) =  ( ()  ) +  () + max
()

"
d ( ()  )

d
−  ( ())

#
 (2.3)

where the constraint in the maximization problem is (2.1). The effective discount rate on

a match is ( + ). The social return to the match, given by the right-hand side of (2.3),

is the sum of net output in the match, the expected value of exogenous separation, and

the maximized social return on investment. It is useful to express the planner’s choice of

investment as a choice of the sequence { ()}≥ . Integrating (2.3) over time generates:

 ( ()  ) = max
{()}≥

Z ∞

[ ( ()  ) +  ()−  ( ())] −(+)(−)d (2.4)

subject to (2.1) for all  ≥  . The initial capital stock at  is given as  ().9

There is a non-degenerate distribution of capital stocks among workers of the same skill

and across different skill levels. This distribution evolves endogenously and will be analyzed

in section 4. However, the value function and the efficient allocation are independent of

this distribution, as formulated above. That is, the allocation is block recursive, as defined

by Shi (2009) and Menzio and Shi (2010). Directed search is critical for block recursivity,

because it enables the planner to separate different skills to search in different submarkets.

9The above step assumes the transversality condition: lim→∞  ( ()  ) −(+) = 0.
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3. Socially Efficient Search and Investment Dynamics

I analyze the investment problem in (2.4) first and then the search problem in (2.2). For

any given , I restrict the domain of  to [0 ∗ ()] without loss of generality.10

3.1. Efficient Investment and Sorting

Let  () be the current-value multiplier of (2.1) in the maximization problem in (2.4). The

Hamiltonian is:  ( ) +  ()−  () + . The optimality conditions are:

for  () ≥ 0: 0 ( ()) =  () = 1 ( ()  ) . (3.1)

for  () :
d ()

d
= ( + ) ()− 1 ( ()  )  (3.2)

These conditions are intuitive. If the optimal investment is non-negative, then it equates

the marginal cost of investment to the shadow value of capital which, in turn, is equal

to the marginal social value of capital. This is (3.1).11 Condition (3.2) requires that the

“permanent” income of a marginal unit of capital, ( + ), should be equal to the sum

of the marginal productivity of capital and the appreciation in the value of capital.

From (3.1) and (3.2), I obtain:

d ()

d
=
1

00
[( + ) 0 ()− 1 ( )] , if  () ≥ 0 (3.3)

The dynamics of investment are driven by the difference between the marginal cost and

the marginal benefit of investment. The marginal benefit is equal to the present value of

the marginal productivity of capital, 1
+
. If the marginal benefit of investment exceeds the

marginal cost, efficient investment must be high, and so the capital stock must be increasing

over time. Because the increase in the capital stock reduces the marginal productivity of

capital, this implies that efficient investment is declining over time. Conversely, if the

10For all   ∗ (), net output is decreasing in . Thus, it is never socially efficient to have   ∗ ().
11The same procedure as in Appendix A in Shi (2018) proves that 1 ( ) exists. The result 1 ( ) =

0 () for  ≥ 0 can be derived alternatively for the maximization problem in (2.3). Also, if  ()  0 is

optimal, then   ∗ (). In this case, the optimal investment is  () = −∞, which allows the capital
stock to fall by a discrete amount to reach ∗ () immediately.

10
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marginal benefit of investment is lower than the marginal cost, then efficient investment

must be low and, hence, must be increasing over time.

Equations (3.3) and (2.1) form the dynamic system of ( ), with the initial condition

 (0) =  (). The final state of the system is (∗ ∗) such that ∗ = 0 and d
d
= 0. Then,

1 (
∗ ) = 0 (0) = 0, which is consistent with the early definition of ∗. To study the

dynamics of sorting, I linearize the dynamic system around the final state:"
dd

dd

#
=

"
 +  −11

00

1 0

# "


 − ∗

#
. (3.4)

Let  denote the (Jacobian) coefficient matrix in (3.4). The elements in  are evaluated

in the final state. The matrix  has one stable (negative) eigenvalue and one unstable

(positive) eigenvalue. The stable eigenvalue is −, where

 () ≡ 1
2

⎧⎨⎩
"
( + )

2 − 411 (
∗ ()  )

00 (0)

#12
− ( + )

⎫⎬⎭  0 (3.5)

The following proposition describes the sorting pattern in the final state and the stable

saddle path converging to the final state (see Appendix A for a proof):

Proposition 3.1. In the final state, the matching between the worker skill and the capital

stock is positive assortative; i.e., ∗0 ()  0. For any given  and the initial condition,

 (0) =  (), the unique stable saddle path of (3.4) is"
 ()

 ()− ∗ ()

#
=

"
 ()

−1
#
[∗ ()−  ()] −() (3.6)

This implies:

 () =  ( ()  ) ≡  () [∗ ()−  ()]  (3.7)

Thus,  ()  0 and d()

d
 0 for all  ∈ (0∞) if  ()  ∗ (). The speed of convergence

of the capital stock to the final state, measured by , is lower if 00 (0) is higher or if −11
is lower. Moreover, 0 ()  0 if and only if −11 (∗ ()  ) is decreasing in .

In the final state, matching between capital and the worker skill is positive assortative

(PAM). This is because the capital stock in the final state equates the marginal productivity

11
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of capital to the rental rate. With complementarity between the two factors, the marginal

productivity of capital is an increasing function of the worker skill. Thus, in the final state,

a higher worker skill will work with a higher capital stock.

Post-match investment is important for the final assignment to be positive assortative.

If post-match investment were not possible, search frictions would make the assignment

“stuck” at the initial assignment. As shown later, the initial assignment can be non-PAM

or even NAM, in contrast to the assignment under frictionless matching (e.g., Becker,

1973). Even if the initial assignment is NAM, post-match investment restores the efficient

assignment to be PAM in the long run.

Investment is positive and declines over the duration of a match, provided that the

initial capital stock is below the final stock. It is socially efficient to front-load investment.

The earlier is investment undertaken, the longer is the time in which the match yields

higher output from the increased capital stock.12 Investment is inversely related to the

gap between the current capital stock and the final stock, as shown by the stable saddle

path (3.7). As investment increases the capital stock toward the final stock asymptotically,

investment declines toward zero. The convergence speed, , depends on the convexity of

the adjustment cost function and the concavity of the output function in the capital stock.

If the adjustment cost is more convex, the marginal cost of adjustment increases more

quickly with investment. If the output function is less concave in the capital stock, the

marginal productivity of capital diminishes less quickly. In either case, the capital stock

increases more slowly toward the final stock.

The skill of the worker in a match affects−11 (∗ ()  ) directly, and indirectly through
the final stock. In general, it is unclear whether a higher worker skill has faster or slower

convergence to the final state. However, the following example shows that for a well-known

class of output functions, the convergence is slower for a higher skill.

Example 3.2. Consider the CES output function: ̃ ( ) = 0
h
 + (1− )

i1
for

 ∈ (0 1),  ∈ (−∞ 1) and 0 ∈ (0∞). Then, there exists a constant 1  0 such that
12If on-the-job search is introduced, investment can be partially delayed (see Shi, 2018).
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−11 (∗ ()  ) = 1, which is a decreasing function of .

It is important to clarify that slower convergence does not imply lower investment in

a match with a higher . As shown by (3.7), investment depends on both  () and the

gap [∗ ()−  ()]. Relative to a low-skill worker, a high-skill worker’s capital stock in the

final state is higher. For any given current stock, the gap from the final stock is larger, and

the gain from investment is greater. Thus, even if a high-skill worker has a lower speed

of convergence, investment is higher for such a worker than for a low-skill worker. I will

establish this result in Proposition 3.3 later.

   i
   d i/ d t= 0

   S 2
 A 2

S 1

     A 1 d k / d t= 0

E 1         E 2
   0        k * (h 1)      k * (h 2 )    k

Figure 1. Dynamics of investment and the capital stock

Figure 1 is the phase diagram of the dynamic system (3.4) for two worker types, 1

and 2, with 2  1. The horizontal axis is the capital stock, which also represents all

combinations of ( ) that yield the schedule d
d
= 0. The schedule d

d
= 0 is negatively

sloped. The intersection between the two schedules is the final state, which is marked as

point E1 for skill 1 and E2 for skill 2. The stable saddle path, (3.7), is the line S1-E1 for

skill 1 and the line S2-E2 for skill 2.
13 The depicted case has  (1)   (2), because the

stable path is steeper for the lower skill 1 than for the higher skill 2. For the dynamic

system to converge to the final state asymptotically, the initial state must be on the stable

saddle path. In Figure 1, the initial state is at point A1 for skill 1 and A2 for skill 2.

The initial capital stock is lower for skill 2 than for skill 1, which is possible as analyzed

13The phase diagram depicts only  ≥ 0. Below the horizontal axis,  = −∞. In this case, the capital
stock falls in a discrete amount to reach the final state instantaneously.
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in the next subsection. Investment is higher for 2 than for skill 1, as discussed above.

From the initial state, investment declines and the capital stock increases toward the final

state. Because investment declines over time, it is front-loaded.

3.2. Efficient Search and the Initial Assignment

For each skill , the efficient choices of search, ( ()   ()), solve the problem in (2.2).

The policy function  () describes the initial assignment of capital to the worker skill.

Denote the social gain from a ( ) match as ∆ ( ) =  ( )−  (). The optimality

conditions of the efficient choices of search are:

for : 1 ( ) = 0 ()
 ()


(3.8)

for : ∆ ( ) =  () 0 ()  (3.9)

The social marginal benefit of capital in the initial assignment is the expected marginal

value of capital from a match, 1 ( ). To generate the matching rate , the measure of

vacancies must be  (), and so the marginal cost of capital in these vacancies is 0 ()  ().

The initial assignment of capital equates the social marginal benefit of capital to this mar-

ginal cost of vacancies, as in (3.8). In addition, the measure of vacancies targeting each skill

must be efficient. By increasing the measure of vacancies marginally, the planner increases

workers’ matching rate. A match creates the social surplus, ∆ ( ). The marginal cost of

increasing  is  () 0 (). For each , the efficient allocation equates the social surplus of

a match to the marginal cost of increasing , as shown by (3.9).

The initial assignment has PAM if and only if 0 ()  0. To describe the properties of

efficient search choices, recall that  ( ) is the investment function on the stable saddle

path, given by (3.7), and  =
0()
()

 1. Appendix A proves the following proposition:

Proposition 3.3. For each given , 2 ( )  0 and  0
 ()  0. Approximate the

derivatives (11 12) along the stable path (3.7). Then,

0 ()  0 iff
(2 − ) 12 ( )

 +  + 
 2 ( ) (3.10)
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0 ()  0 iff
(1 − ) 12 ( )

 +  + 
 2 ( )  (3.11)

where  =  ( ), and 2  1  0 are defined by

1 =
( +  + ) (− 1)

000 + 00 () 0 ()
 2 =

( +  + ) 00

(− 1) 0 ()  (3.12)

Moreover, 2 ( )  0 for all   ∗ (). If 0 () ≤ 0, then 0 ()  0 and d(())

d
 0.

In the social optimum, a higher skill increases the social value, both in employment and

in unemployment. However, a higher skill is not always assigned to match with a higher

capital stock. This result holds despite the maintained assumption that capital and the

worker skill are complementary in production. To explain the result, note that there are

two ways to capture the high social surplus from a more productive worker. One is PAM.

The other way is to increase the utilization of the high skill by matching such a worker

with a job more quickly. Increasing the matching rate requires an increase in the number

of vacancies per searcher, which is optimal only if the capital stock for each vacancy is

lower. The social optimum uses either PAM or a higher matching rate for a higher skill,

or both. Given post-match investment, there can be three cases:

Case 1: 0  0 and 0  0. This case occurs when the two factors are weakly com-

plementary with each other. In this case, the cost of creating high-capital vacancies for

PAM exceeds the gain in productivity from PAM. It is socially efficient to make the initial

assignment NAM so that many low-capital vacancies can be created for high-skill workers

to increase the utilization of such workers.

Case 2: 0  0 and 0  0. This case occurs when the two factors are moderately

complementary with each other. In this case, the social optimum uses both PAM and a

higher matching rate for high-skill workers.

Case 3: 0  0 and 0  0. This case may occur when the two factors are strongly

complementary with each other. In this case, it is socially efficient to capture such com-

plementarity through strong PAM. Because vacancies with a higher capital stock are more

costly to create, the number of vacancies for high-skill workers is small, and so the matching

rate for these workers is lower than for low-skill workers.

15
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In all cases, it is never socially efficient to assign both a lower capital stock and a

lower matching rate to a higher skill. If a higher skill has a lower matching rate, then the

initial assignment must be PAM. If the initial assignment fails to be PAM, then the social

optimum matches a higher skill more quickly than a lower skill. In this case, investment

immediately after a match is formed is also higher for a higher skill than for a lower skill.

More generally, 2 ( )  0 for all   ∗ (), as stated in Proposition 3.3. Thus, for any

given capital stock, investment increases in the worker skill.14

Table 1. Features of the initial assignment and workers’ matching rate

  1:

0:  0  0  0

|––––— |––––––— |––––– 12
++

0 (Case 1) 2
2− (Case 2) 2

1− (Case 3)

0:  0  0  0

1 ≤   2:

0:  0  0

|––––––––— |––––––––— 12
++

0 (Case 1) 2
2− (Case 2)

0:  0  0

 ≥ 2:

0:  0

|––––––––––––––––––— 12
++

0 (Case 1)

0:  0

The above explanation for the possible failure of PAM in the initial assignment is similar

to that in Shi (2001, 2005) and Eeckhout and Kircher (2010), who abstract from post-match

investment. The key difference from those models is that post-match investment affects

the threshold levels of complementarity that divide the three cases. To help explain this

effect, Table 1 divides the efficient allocation into three regions of investment. It lists the

initial assignment and the matching rate according to the measure of the complementarity

between the two factors,
12()

++
. The two threshold levels are 2

1− and
2

2− , where 2 

1  0 are defined by (3.12). The top part of Table 1 is the region of low investment:

  1. For such investment, both thresholds of the complementarity are strictly positive,

and all three cases explained above exist. In the middle part of Table 1, investment is

moderate: 1 ≤   2. Because 1 −  ≤ 0, the threshold 2
1− becomes inapplicable.

14To prove this result, I differentiate (3.1), instead of (3.7), with respect to . (3.7) is an approximation.

Differentiating (3.7) may yield an ambiguous result.
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Only Cases 1 and 2 exist. In the bottom part of Table 1, investment is high. Because

1 −   2 −  ≤ 0, both thresholds become inapplicable. Only Case 1 exists.

This analysis reveals that post-match investment increases the relative benefit of a

higher matching rate to PAM in the initial assignment. By making a high skill employed

more quickly, the social optimum can capture the benefit of the skill more quickly. This

may be socially efficient even if it requires the initial assignment to be NAM, because

post-match investment can restore the assignment to be PAM. In Table 1, there are more

cases for 0 ()  0 than for 0 ()  0. Also, an increase in the marginal productivity of

the skill, 2, widens the region of NAM in the initial assignment in Table 1.

Moreover, strong complementarity between capital and skills may induce the initial

assignment to be NAM, which is opposite to the outcome in sorting models without post-

match investment. The reason is that investment is likely to be higher when capital and

skills are more complementary with each other. With high investment to come after a

match is formed, there is little benefit for high-skill workers to wait for a long time just for

a PAM match. Instead, such workers should match quickly through NAM. This is the case

 ≥ 2 in Table 1, where the only outcome is 
0 ()  0 and 0 ()  0. In contrast, Case 3

discussed earlier requires strong complementarity but has the matching features 0 ()  0

and 0 ()  0. This case may not exist at all in the social optimum, because the matching

features are inconsistent with high investment.

    k(t)
k*(h2)

k*(h1)

(h1)

(h2)

   0  t0    t

Figure 2. Crossing paths of capital stocks for two types of workers
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Negative sorting in the initial assignment has an important implication for the dynamic

paths of capital stocks for different skill levels: They must cross each other over time. Figure

2 depicts the time paths of capital stocks for workers of skills 1 and 2, with 2  1.

With negative sorting in the initial assignment, the path for the high-skill worker starts

below the path for the low-skill worker. The relative position between the two skills levels

is reversed in the final state, because the final state has PAM. Thus, the two paths must

cross each other at some time point, which is depicted as time 0 in Figure 2. Sorting

between capital and the worker skill is negative for  ∈ [0 0) and positive for   0. This

implies further that matching is mixed in the population at any given point of time. Even

if the initial assignment is unique for each worker skill, two workers of the same skill are

working with different capital stocks if their matches have lasted for different lengths of

time. Similarly, workers with different skill levels can be working with the same capital

stock if their matches differ in the duration in a particular way.

4. Dynamic Sorting and the Stationary Distribution

Workers of the same skill are assigned to match with the same capital stock, but they

may not succeed in matching at the same time. Those who succeeded earlier have had

a longer time of investment and, hence, a higher capital stock. The capital stock in a

match continues to increase toward the final state until exogenous separation terminates

the match. There is an ergodic distribution of workers of the same skill over capital stocks.

To examine the overall sorting pattern, I characterize this distribution.

Among the workers of any given , let the fraction of unemployed be  () and the

fraction of employed be  () = 1−  (). The flow of unemployed skill- workers exiting

unemployment is  ()  (). The flow of employed workers of skill  into unemployment

is  (). In the steady state, since the two flows must be equal to each other, then

 () =


 +  ()
. (4.1)

Among employed workers of skill , let  (|) be the cumulative distribution function
over . To compute this distribution, consider the group of workers of skill  who are em-
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ployed with capital stocks greater than . The measure of this group is  () [1− (|)],
with  ( () |) = 0 and  (∗ () |) = 1. Consider any  ∈ ( ()  ∗ ()). Let d be an
arbitrarily small interval of time such that −  ( )d   (). In this time interval, the

workers who are employed with capital stocks in the interval ( −  ( )d ] flow into

the described group as a result of investment. This inflow is:

 () lim
d→0

 (|)− ( −  ( ) d|)
d

=  ()
0 (|)  ( ) 

Exogenous separation generates the outflow,  ()  [1− (|)]. Equating the inflow and
outflow yields:

0 (|)
1− (|) =



 ( )
 (4.2)

Among skill- employed workers, the mean of capital stocks is

 () ≡
Z ∗()

()
 d (|) . (4.3)

Definition 4.1. Capital and skills have PAM-D (positive assortative matching according

to the distribution) if  (|) has the first-order stochastic dominance with respect to ,
i.e., if  (|) is decreasing in  for all  ∈ ( ()  ∗ ()). Capital and workers have
PAM-M (positive assortative matching according to the mean) if  () is increasing in .

The following proposition is proven in Appendix B:

Proposition 4.2. 0 ()  0 if and only if 0 ()  0. Approximate the dynamic system

of ( ) by (3.4). Then,

 (|) = 1−
"

∗ ()− 

∗ ()−  ()

# 
()

= 1− [ ( )] 
() , (4.4)

 () =
 () +  () ∗ ()

 () + 
=  () +

 ( ()  )

 () + 
 (4.5)

where  ( ) ≡ ()

(())
and  () is defined by (3.5). 00 (|)  0 if and only if  ()  .

Moreover, PAM-D occurs if and only if

 ( )0 () + [1− ( )] ∗0 ()  0()()
[()]2

ln ( )

for all  ∈ ( ()  ∗ ()) . (4.6)

0 () ≥ 0 is necessary and sufficient for (4.6) to hold. However, 0 () ≥ 0 is sufficient, but
may not be necessary, for PAM-M.
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A higher skill has a lower unemployment rate if and only if the matching rate is higher.

This occurs in the social optimum except when the two productive factors are strongly

complementary with each other as in Case 3 (see Table 1). For any given skill , the

density function of the distribution of workers over the capital stock is decreasing if and

only if  ()  . This result is intuitive. The upper tail of the distribution of employed

workers of any given skill  is 1− (|). Workers exit this tail if they are hit by exogenous
separation, and workers outside this tail enter it as firms invest to increase the capital stock.

Investment is a ratio  () to the width of the support of the upper tail, [ ∗ ()]. When

 increases, the width narrows, which reduces the size of both the exit and the entry into

the upper tail. Then, the difference between the two flows depends only on the difference

between the rates of exit and entry. If  ()  , the exit rate is higher than the entry rate.

To keep the distribution stationary, the base for the exit must become increasingly smaller

when  increases; i.e., the density of the distribution must be decreasing.15 Conversely, if

 ()  , the density of the distribution must be increasing.16

The condition (4.6) is necessary and sufficient for PAM-D. It reveals three determinants

of PAM-D: the initial assignment  (), the final assignment ∗ (), and the speed of

convergence to the final state,  (). PAM of the initial and PAM of the final assignment

contribute to PAM-D because they increase capital stocks assigned to high-skill workers

at the two ends of the dynamic path. If the capital stock converges to the final state more

quickly for high-skill workers, i.e., if 0 ()  0, it also contributes to PAM-D by increasing

capital for high-skill workers more quickly. PAM in the initial assignment is necessary for

PAM-D. If  (2)   (1) for some 2  1, then the lower bound on the support of

 (|2) is lower than that of  (|1). In this case, for relative short tenure, capital stocks
are lower for skill 2 workers than for skill 1 workers (see Figure 2).

PAM in the initial assignment is also sufficient for PAM-D. This result may not be

15This contrasts with undirected search models, e.g., Burdett and Mortensen (1998), where the density

is increasing and strictly convex.
16Define  = [∗ ()− ]

−1
. Then, (4.4) implies that  is distributed according to  (|) = 1 −

{[∗ ()−  ()] }−(), which is the Pareto distribution with the parameter  () . The larger is 
relative to  (), the smaller is  () , and so the fatter is the tail of the distribution of . Note that the

density function of  is always decreasing.
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obvious, because the speed of convergence to the final state can be lower for high-skill

workers than for low-skill workers. That is, 0 ()  0 is possible (see Example 3.2). Even

if the initial assignment is PAM, one might think that the slower convergence can reverse

the ranking in the capital stock between two skill levels in the transition to the final state.

This does not happen in the social optimum. The reason is that, for any given capital

stock, investment increases in the worker skill, i.e., 2 ( )  0 for all   ∗ () (see

Proposition 3.3). If high-skill workers start employment with a higher capital stock in the

initial assignment, higher investment will keep their capital stocks higher than those for

low-skill workers throughout the transition to the final state.

The three determinants for PAM-D are also the determinants for PAM-M. The mean

of capital stocks for any given worker skill is a weighted average of the initial and the

final assignment, as shown by the first equality in (4.5). In contrast to the distribution

where the weights are associated with investment, the weights in the mean depend only on

the two rates,  and . The weight is 
()+

for the initial assignment and
()

()+
for the

final assignment. If the exit rate  is higher, the initial assignment has a higher weight in

the mean because the capital stock in the match for a worker remains close to the initial

assignment before the worker separates into unemployment. If the convergence speed  is

higher, the final assignment has a higher weight in the mean because the capital stock in

the match increases quickly toward the final state.

The second equality in (4.5) is also illuminating. It states that the mean of the increase

in the capital stock during employment is equal to the present value of the initial invest-

ment, where the discount rate is the sum of the convergence speed, , and the exogenous

separation rate, . The separation rate increases the discounting because separation termi-

nates a match. The convergence speed  also increases the discounting because investment

declines more quickly if  is higher.

PAM-D implies PAM-M. Because PAM in the initial assignment is sufficient for PAM-

D, it is also sufficient for PAM-M. However, PAM in the initial assignment is not necessary

for PAM-M. Even if high-skill workers are assigned to a lower capital stock at the beginning
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of employment, investment and the final capital stock are higher for such workers than for

low-skill workers. These factors in the transition can dominate negative sorting in the

initial assignment to make the mean of the capital stock increase in the worker skill.

The above analysis compares the conditional distribution between different types of

workers. It is also useful to examine the joint distribution between capital and the worker

skill. For example, the correlation between the two factors in employment is indicative of

sorting, but computing the correlation involves the joint distribution. Note that the density

of skill- workers in employment is  ()
0 (), where  0 is the density function of types

among all workers. Denote the measure of all employed workers as  =
R 


 ()d ().

The employment share of skill- workers is

 () =
 ()

0 ()




Let  ( ) be the joint cumulative distribution function of employed workers over ( ).

Then, the joint density is 12 ( ) =  ()0 (|), and so17

 ( ) =

Z 



 ()
³
|̃

´
d̃ (4.7)

Since the derivative of12 ( ) with respect to  has the same sign as
00 (|), Proposition

4.2 implies that the joint density is decreasing in  if and only if  ()  .

The joint distribution reveals that employment shares can be an additional factor af-

fecting the extent of sorting. The employment share of a worker skill accentuates the

matching pattern of that skill by allowing such matches to be sampled more often in the

data. If a worker skill has a high employment share and such workers have PAM, then

the skill will contribute a large share to PAM in the employed sample. In the exposition

for Proposition 3.3, I explained that the social optimum is more likely to have higher uti-

lization of high-skill workers than PAM in the initial assignment. Thus, 0 ()  0 is more

likely than 0 ()  0. If the initial assignment fails to be PAM, the high share of high-skill

workers in employment may reduce the extent of sorting identified from the data.

17The marginal density of  is equal to  () = 2 (
∗ ()  ) and the marginal density of  is 1 ( ).

The density of  conditional on  is 0 (|) = 12()

1()
, and the conditional cumulative distribution is

 (|) = 1()

1()
.
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5. Quantitative Analysis

5.1. Calibration and Simulation

To calibrate the model, I use the following functional forms:

̃ ( ) = 0
1−, 0  0,  ∈ (0 1) ;  () = −

− ,     0;

 () = 0 [
− − 1]−1 , 0  ∈ (0∞) ;  () = 1

2, 1  0;

 () = 0
1 , 0  0, 1 ≥ 1.

Net output is  ( ) = ̃ ( ) − . The inverse of  () is a Dagum (1975) function.

The model is calibrated monthly. The distribution of worker types is uniform, where

 = 1 and  = 025. This specification of the skill distribution has no consequence

on the initial assignment or the dynamics of the capital stock among workers of the same

skill, because the social optimum features separation between any two types of workers.

Denote the average value of  in the population as  =
+

2
= 0625. Table 2 lists the

parameters, their values and the calibration targets (see the Supplementary Appendix C

for the procedure).

Table 2. Identification of the parameters

Parameter Value Target

 415× 10−3 quarterly interest rate = 00125

 055 capital share at ∗ () is 055
0 00599 normalize ∗ () = 100
 0026 monthly EU rate in CPS

 05 elasticity d ln 

d ln 
= 039 at average  = 0065

0 029 market tightness  = 072 at average 

 0062 
∗()

= 029 ( home production

average market net output
=04)

1
0
1

4462

1817× 10−5
0029

(1 0 1) minimize the distance

between (() () ())

and the targets (015 006 003)

Several aspects of the calibration are worth noting. First, the average unemployment

rate is targeted at 65%, and the ratio of home production of an unemployed worker to

the average net output in the market is targeted at 40%. These targets are the same as in

Hornstein et al. (2011) who emphasize the two targets as constraints on a model’s ability

to generate frictional wage dispersion. To reduce the computation time, I target, instead,
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the ratio of home production to the maximum net output of workers of skill  to 029,

and then check the model’s prediction on the ratio of home production to average market

production. Similarly, rather than targeting the average unemployment rate directly, I

minimize the distance between the model and the data in unemployment rates of workers

of three types (  ).

Second, the value  = 055 is chosen with an intended target on the capital share of

output, 036. The capital share in a ( ) match is 

̃()
= 

0

³



´1−
. This share varies

with  and , despite the Cobb-Douglas production function. For any given , the capital

shock increases over time as the capital stock increases. Only in the final state is the capital

share equal to . The average capital stock for any given skill  is significantly below the

final state. The value of  is set to be greater than 036 in order for the average capital

share in the model to be close to this realistic value.

Third, I identify ( 0) using the market tightness, , and the elasticity of the job-finding

rate with respect to the market tightness, 1

. Because both statistics depend on the worker

skill, I apply the targets to the skill of workers whose unemployment rate is at the average

level, 0065. The market tightness comes from Pissarides (2009) who derives the value

from the Job Openings and Labor Turnover Survey (JOLTS) and the Help-Wanted Index.

The parameter value  = 05 implies that in the submarket searched by such workers, the

job-finding rate varies with the tightness with an elasticity 1

≡ d ln 

d ln ()
= 039. This value

lies within the range used in the literature.18

Table 3. Performance of the calibration

Model Targets

 () 0150 015

 () 0053 006

 () 0046 003

average  0060 0065
home production

average 
0377 040

average share of  0342 036

The parameters in the cost functions, (1 0 1), minimize the distance between the

model and the data in unemployment rates of the three types of workers, (  ).

18Shimer (2005) estimates this elasticity as 027, but Pissarides (2009) uses the estimate 05.
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Table 3 lists the result of this minimization and some other statistics. The unemployment

rate at  is close to the target, which unemployment rates at  and  are lower than

the targets. The average unemployment rate is close to the target. So is the ratio of home

production to average market output. The average capital share is lower than the target.

This discrepancy is small, especially in consideration that the capital share has excluded

the costs of vacancies and capital adjustments. With the calibrated parameters, I compute

the social optimum (see the Supplementary Appendix C for the procedure).

5.2. Initial Assignment and Matching Rate

Figure 3 depicts the initial assignment  () and the matching rate  (). The initial

assignment is NAM, and the matching rate increases in the skill, as in Case 1 listed after

Proposition 3.3.19 As the skill increases from  to  , the initial assignment decreases

from  () = 5758 to  () = 4128. This reduction in the capital stock would reduce

net output by 12% if the skill remained at . From  to  , the matching rate increases

from  () = 0147 to () = 0545, an increase of 270%. As analyzed in section 3.2,

the higher matching rate for a higher skill enables the social optimum to utilize the higher

skill more effectively than using PAM in the initial assignment.

0.4 0.6 0.8

2

4

6
7

1

 h( )

p h( ) 10

10.25 h

Figure 3. Initial assignment  () and matching rate  ()

Because the initial assignment of capital to workers is NAM, the time paths of capital

stocks for different types necessarily cross each other, as illustrated in Figure 2. With the

calibrated parameters, this crossing occurs in less than 9 months, as shown in the upper

19Referring to Table 1, the calibrated model has 1 ()  0 ()  2 () and
12(())

++()


2(())

2()−0() for
all , where 0 () =  ( ()  ).
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panel in Figure 4. The lower panel in Figure 4 depicts the time paths of net output for the

three types of workers, (  ). Although workers of a higher skill have a lower capital

stock at the time of a match, this negative assignment does not eliminate the productivity

advantage of the higher skill. That is, net output at the time of a match increases in the

worker skill. At all time points after the match, net output is higher for a high skill than

for a low skill. Moreover, the curve  ( ( 2)  2) is steeper than the curve  ( ( 1)  1)

for 2  1, and so the difference in net output between skills increases over time.

0 20 40 60 80
0

20

40

60
60

0

kt hH t( )

kt ha t( )

kt hL t( )

960 t

( ) =  ( ): Capital stock for a skill- worker at  (months)

0 20 40 60 80
0

0.1

0.2

0.3
0.35

0

ft hH t( )

ft ha t( )

ft hL t( )

960 t

( ) = (( ) ): Net output of a skill- worker at  (months)

Figure 4. Net output over time for (  )

If workers’ earnings are proportional to net output, the above results imply that workers

of a higher skill have a steeper time profile of earnings than workers of a lower skill. Also,

if one traces a cohort of workers who become employed at the same time, the variance

in earnings in the cohort increases over time. Both the heterogeneity in the slope of

the earnings profile and the fanning-out of earnings are consistent with the evidence on

inequality over the life cycle (e.g., Deaton and Paxson, 1994, Guvenen, 2007).
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5.3. Distribution of Workers, the Mean, and Sorting

Figure 5 depicts the distribution of workers for   and  . The upper panel is the cu-

mulative distribution  (|), and the lower panel is the density function 0 (|). Because
the paths of capital for different skills cross over time,  (|) fails to have the first-order
stochastic dominance with respect to . However, this failure occurs for relative low levels

of . After  passes a critical level,  (|2)   (|1) for any 2  1.

0 20 40 60
0

0.5

1
1.05

0

G k hL( )

G k ha( )

G k hH( )

600 k

 ( ): Cumulative distribution of  among skill- workers

0 20 40 60
0

0.02

0.04

0.06

0.08
0.08

0

Gp k hL( )

Gp k ha( )

Gp k hH( )

600 k

 ( ) = 1 ( ): Density function of  among skill- workers

Figure 5. The cumulative distribution  (|) and density 0 (|)
for  =    .

The density functions in the lower panel in Figure 5 illustrate the features of the distri-

bution more clearly. Because the initial assignment for skill  is lower than for skill ,

the density function  (|) becomes positive first at a lower capital stock than  (|).
However, the density is smaller for skill  than for skill  at low capital stocks if both

densities are positive. As the capital stock increases, the density of workers decreases,

because  ()   for all . This decrease is less rapid for a high skill than for a low
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skill. When the capital stock becomes sufficiently high, the density functions of capital

stocks for different skills cross each other. Furthermore, when  increases above ∗ (),

no workers of skill  are employed with such capital stocks, but there are workers of skill

 employed with such capital stocks.
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Figure 6.  (),  () and related values in the final state

The calibrated social optimum features PAM-M. The mean of the capital stock is an

increasing function of the worker skill, as depicted in the upper panel in Figure 6. As the

worker skill increases from  to  , the mean of the capital stock increases from 1499

to 2758. In addition to the higher average stock of capital, a higher worker skill itself

increases net output. Thus, the mean of net output,  (), increases in the worker skill,

as depicted in the lower panel in Figure 6. PAM-M, illustrated in Figure 6, and the profile

of the assignment, illustrated in Figure 4, indicate that dynamic sorting between capital
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and the worker skill is strong.20

Figure 6 also shows that the capital stock and net output are substantially lower than

in the final state predicted by the neoclassical theory. Moreover, this gap between the two

increases in the worker skill. In addition to  and ∗(), the lower panel in Figure 6 shows

the percentage gap between the two,  (). As the worker skill increases from  to  ,

the gap between the mean of net output and the final state increases from 85% to 302%.

The explanation is as follows. Because of search frictions, the capital stock in the initial

assignment is substantially lower than in the final state. Although investment increases

the capital stock toward the final state, the process is slowed down by the adjustment cost

in investment and terminated by separation. Among any given skill of employed workers,

the average length of time with the job is limited. Moreover, the higher is the worker skill,

the larger is the gap between the initial and the final stock, and the longer is the time

needed to invest for the capital stock to reach the final state. In the upper panel in Figure

4, at  = 96 months (8 years), the capital stock for a skill  worker is only 573% of the

final stock. However, at the separation rate  = 0026 per month, the fraction of matches

that survive to  = 96 is only (1− )
96
= 00797.

5.4. Frictional Inequality

Frictional inequality refers to inequality in earnings among workers of the same skill. Horn-

stein et al. (2007) propose to measure frictional inequality by the ratio of the mean to the

minimum of wages among workers who are identical in observable types. Another measure

is the coefficient of variation. Because the current focuses on the social optimum instead

of the equilibrium, I calculate the measures of frictional inequality in net output instead of

wages. However, if wages are a constant fraction of net output, the measures of inequality

in net output are equal to those in wages.

Figure 7 depicts the coefficient of variation,  (), and the mean-min ratio, (),

20However, a linear regression of the capital stock on the worker skill in the model would under-estimate

sorting. As a proxy for the regression coefficient, the correlation coefficient between capital and skill among

employed workers is 026. Non-linearity of output in the capital stock may be a cause of this relatively

lower correlation.
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in net output as functions of the worker skill. The coefficient of variation ranges from 009

among skill  workers to 0253 among skill  workers. The mean-min ratio ranges

from 129 among skill  workers to 2085 among skill  workers.21 Weighted by the

employment shares, the average among all employed workers is 0226 for the coefficient of

variation and 1769 for the mean-min ratio. Such frictional inequality is large and realistic.

Hornstein et al. (2011) estimate the mean-min ratio in wages in the U.S. data to be between

17 and 2, but find the counterpart in most search models to be lower than 105. Note that

I have kept the two calibration targets that Hornstein et al. (2011) have explained to be

the critical constraints on frictional dispersion: the average unemployment rate and the

ratio of home production to market output. Despite these calibration targets, the current

model is able to generate large frictional dispersion. The reasons for this success are that

post-match investment is available and that the vacancy cost is convex in the capital stock,

as explained in detail in another paper (Shi, 2018).
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Figure 7. Coefficient of variation and mean-min ratio in net output

among skill- workers

Higher skill workers also have lower unemployment rates. This is remarkable for two

reasons. First, if different types of workers are weighted by their employment shares to

compute the average frictional inequality, then high-skill workers have higher weights than

low-skill workers. This explains why the mean of overall frictional inequality is closer

21Friction inequality in the capital stock is larger than in net output. The second equality in (4.5) shows

that the mean-min ratio in capital among type  workers is () () = 1 +
(())()

()+
. This ranges

from 241 for  to 556 for  .
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to that among skill  workers than to that among skill  workers, as reported above.

Second, a low unemployment rate is not a large obstacle to generating high frictional

inequality. Hornstein et al. (2011) have intuitively explained that a low unemployment

rate implies a low option value of search and, hence, small frictional dispersion. This

link between frictional dispersion and the unemployment rate breaks down and is reversed

when post-match investment is available. To reduce the unemployment rate for high-skill

workers, the social optimum lowers the initial assignment of capital to such workers, which

increases frictional dispersion among such workers. Across worker types, the lower the

unemployment rate, the larger the frictional dispersion.22

The quantitative results from subsections 5.2 to the current subsection demonstrate

that both frictional sorting and post-match investment are important. Investment quickly

reverses negative sorting in the initial assignment and widens the gap in net output be-

tween skills. Without such investment, as in the literature on frictional sorting, a model

would reach a wrong conclusion about the relationship between strong complementarity

and sorting in the initial assignment. On the other hand, without matching frictions, the

neoclassical theory of investment by firms would significantly exaggerate the extent of pos-

itive sorting, as illustrated in subsection 5.3 by the gap between the average capital stock

for each skill in the current model and in the final state. Moreover, a frictionless model

would not provide an endogenous mechanism to generate inequality within each skill, the

heterogeneity in the slope of the time profile of labor productivity between skills, or the

fanning-out of labor productivity over time.23

6. Conclusion

This paper has integrated frictional matching into a neoclassical framework of investment

by firms to analyze dynamic sorting between capital and worker skills in the constrained

22Figure 7 shows that frictional inequality increases in the worker type. The empirical evidence is mixed

on this. Gottschalk and Moffitt (2009) report that, in the late 1980s and early 1990s, the transitory

variance in log earnings grew more quickly for the more-educated group than the less-educated group

(high school or less). However, the pattern was the opposite in the 1970s and early 1980s.
23To account for these facts, the literature on earnings profiles introduces shocks to earnings (e.g., Deaton

and Paxson, 1994).
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social optimum. The model predicts that strong complementarity between capital and

worker skills in production makes the socially efficient pattern of sorting negative at the

time of a match, which is opposite to the result in the absence of post-match investment.

However, investment makes sorting positive eventually. Because the sorting pattern in a

match reverses over time, labor productivity increases more sharply for a high skill than

for a low skill, and this between-skill difference increases over time. There is also dispersion

in labor productivity within each skill. The calibrated model shows that sorting is positive

on average and that dispersion in labor productivity is significant both between skills

and within each skill. These results suggest that dynamic sorting with matching frictions

and post-match investment can be an important mechanism for generating heterogeneity

in earnings profiles, the increasing variance in earnings over the life cycle, and within-

group inequality. It is time to incorporate this mechanism as a standard ingredient of

macroeconomic models.

There are at least two interesting directions for future research. One is to incorporate

on-the-job search to examine how sorting of workers between firms interacts with sorting

within each firm. With homogeneous workers, on-the-job search can delay socially effi-

cient investment (see Shi, 2018). With heterogeneous workers, this delay can prolong the

negative sorting pattern at the beginning of a match and induce more realistic patterns

of job-to-job transition. The other direction of future research is to examine how sort-

ing responds to a skill-biased technological progress. If such a progress increases the gain

from employing high skills quickly, then it increases the extent of negative sorting at the

beginning of a match. Because post-match investment makes sorting positive eventually,

inequality is likely to increase both between skills and within each skill.
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Appendix

A. Proofs for Section 3

Proof of Proposition 3.1:

The final capital stock, ∗ (), satisfies 1 (∗ ()  ) = 0. Differentiating yields:

∗0 () =
12 (

∗ )
−11 (∗ )  0,

where the inequality comes from 11  0 and 12  0. It is easy to verify that the eigenvector

of the matrix  in (3.4) corresponding to the stable eigenvalue − is [−1] , where  is
a constant to be determined. The unique stable saddle path of (3.4) is"

 ()

 ()− ∗ ()

#
=

"
 ()

−1
#
 −()

Because  (0) =  (), setting  = 0 in the second equation yields  = ∗ ()− (). Thus,

the unique stable path is (3.6). Dividing the two equations in (3.6) yields (3.7).

It is evident from (3.6) that if  ()  ∗ (), then d()

d
=  ()  0 and

d()

d
 0. The

speed of convergence to the final state is  as defined in (3.5). Clearly,  is lower if 00 (0)

is higher or −11 is lower. Moreover, 0 ()  0 if and only if −11 (∗ ()  ) is decreasing
in . This completes the proof of Proposition 3.1. QED

Proof of Proposition 3.3:

The envelope conditions of  for (2.4) and (2.2) yield:

2 ( ()  ) =


 + 
 0
 () +

Z ∞


2 ( ()  ) 
−(+)(−)d (A.1)

 0
 () =

2 ( )

 + 
 (A.2)

where I switched the indices  and  . Because 2  0, then 2 ( )  0 and 
0
 ()  0 for

any given . Differentiating (3.8) and (3.9) yields:"
0 ()
0 ()

#
=

1

det

"
00 12

1
− ∆2


(− 1)

(
00

0 − 11
1
)∆2 − (− 1)12

#
(A.3)
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where  = 0

( 1) and

det = 00(
00

0
− 11

1
)− (− 1)2 1


 (A.4)

The arguments of (1 11 12∆2) are ( ) and I substituted ∆1 ( ) = 1 ( ). Be-

cause the optimal search choice maximizes the expected social return on search, the ob-

jective function in (2.2) must be concave at the optimal ( ). This implies det  0. To

determine the signs of 0 () and 0 (), I need to compute ∆2 ( ) and 12 ( ).

To compute ∆2 ( ), set  = 0 in (2.3) and substitute  (0) =  ( ). I get:

( + ) ( )−  () =  ( ) + [1 ( )  −  ()]=()  (A.5)

Subtracting (2.2) from the above equation yields:

∆ ( ) =
 ( )−  +  ()  () + [1 ( )  −  ()]=()

 +  + 
 (A.6)

where  =  (). Fixing  but taking the dependence  () into account, I differentiate ∆

with respect to . Substituting (3.1) and (3.9) into the result, I get:

∆2 ( ) =
2 ( ) + 12 ( )

 +  + 
 (A.7)

To compute 12, differentiate (A.1) with respect to :

12 ( ()  )  () = −2 ( ()  ) + ( + )

Z ∞


2 ( ()  ) 
−(+)(−)d (A.8)

This holds for all  ≥ 0. Set  = 0. Using (3.6), I approximate 2 ( ) near  =  as

2 ( ) ≈ 2 ( ) + 12 ( ) (
∗ − )

³
1− −

´
 (A.9)

The last term comes from substituting  from (3.6). With this, I compute:Z ∞
0

2 ( ()  ) 
−(+)d ≈ 1

 + 

"
2 ( ) +

12 ( )

 +  + 
 ( )

#
 (A.10)

where  ( ) =  (∗ − ). Set  = 0 in (A.8). Substituting (A.9) and (A.10) yields:

12 ( ) ≈ 12 ( )

 +  + 
 0 (A.11)
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In addition, because 1 ( ()  ) = 0 ( ()) for all  ≥ 0 by (3.1), then

1 ( ) = 0 ( ( ))  11 ( ) = −00 ( ( ))  ()  (A.12)

where I used 1 ( ) = − from (3.7). Substitute (A.7), (A.11) and (A.12) into (A.3):

0 () ≈ (−1)
(++) det

n
(2 − ) 12()

++
− 2 ( )

o
0 () ≈

00
0 +

00()
0()

(++) det

n
2 ( )− (1 − )

12()

++

o


(A.13)

where  =  ( ), and (1 2) are defined by (3.12). Because det  0 and   1, then

(A.13) implies (3.10) and (3.11). Also, det  0 implies 2  1. Clearly, 1  0 and 2  0.

Differentiating 1 ( ) = 0 ( ( )) with respect to  yields:

2 ( ) =
12 ( )

00 ( ( ))
 0 for all   ∗ () 

where the inequality follows from a result similar to (A.11). Since 1 ( ) = − (), then
d

d
 ( ()  ) =

12 ( )

00 ()
−  ()0 ()  (A.14)

Because 12  0, then 0 () ≤ 0 implies d
d
 ( ()  )  0. Also, by (A.13), 0 () ≤ 0

implies 2 ( ) ≥ (2 − )
12()

++
and so

2 ( )− (1 − )
12 ( )

 +  + 
≥ (2 − 1)

12 ( )

 +  + 
 0

This implies 0 ()  0. QED

B. Proof of Proposition 4.2

It is clear from (4.1) that 0 ()  0 if and only if 0 ()  0 and, hence, if and only if (3.11)

is satisfied. The text preceding the proposition has derived (4.2) for the distribution of skill

 employed workers over . Approximating the dynamics of ( ) by (3.4), then  ( )

satisfies (3.7). Substituting into (4.2), integrating from  () to , and using  ( () |) =
0, I obtain the cumulative distribution function in the first equality in (4.4). From (3.7),

∗ () −  = ( ) () for all  ∈ [ ()  ∗ ()]. Substituting this relationship yields
the second equality in (4.4). The corresponding density function is

0 (|) = 

 ()
[∗ ()− ]


()

−1
[∗ ()−  ()]


() 
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It is easy to verify that 00 (|)  0 if and only if  ()  .

For any fixed , differentiating (4.4) with respect to  yields:

− ()

(1−)


 =  ( )0 () + [1− ( )] ∗0 ()− 0()()

2()
ln ( )

Thus, 

 (|)  0 for all  ∈ ( ()  ∗ ()) if and only if (4.6) holds. If 0 ()  0, then

(4.6) is violated for  sufficiently close to  (), because  ( ) is sufficiently close to 1 for

such values of . Thus, 0 () ≥ 0 is necessary for (4.6) to hold. To prove that 0 () ≥ 0 is
also sufficient for (3.7) to hold, suppose 0 () ≥ 0 and consider interior  ∈ ( ()   ()).
Note that (3.7) implies 2 ( ) = 0 () [∗ ()− ] +  () ∗0 (). Because 2 ( )  0

by Proposition 3.3, then
0()
2()


−∗0()
(())

. For all interior ,  ( ) ∈ (0 1), and so

− ()

(1−)


 ≥ [1− ( )] ∗0 ()− 0()()

2()
ln ( ) 

 [1− ( ) + ( ) ln ( )] ∗0 () 

The function (1− +  ln) is strictly decreasing in  for all  ∈ (0 1), and it is equal to
0 at  = 1. Thus, the function is strictly positive for all  ∈ (0 1). This shows − 


  0

for all interior .

To compute the expected value of  for any given , I substitute  (|) from (4.4) into
(4.3) and integrate by parts. This yields the first equality in (4.5). The second equality in

(4.5) follows from  ( ) =  () [∗ ()−  ()]. Differentiating the first equality in (4.5)

with respect to , I can verify that  () increases in  if and only if

0 () +  () ∗0 ()
∗ ()

+
 0 ()
 () + 

 0 (B.1)

Even if 0 ()  0, (B.1) can still hold. Thus, 0 () ≥ 0 is not necessary for (B.1) to

hold. For sufficiency, note that PAM-D implies PAM-M. Because 0 () ≥ 0 is sufficient
for PAM-D, then it is also sufficient for 0 ()  0.24 QED

24To directly prove that 0 () ≥ 0 is sufficient for 0 ()  0, suppose 0 () ≥ 0. If 0 () ≥ 0, then
(B.1) shows 0 ()  0. If 0 ()  0, differentiate the second equality in (4.5) to obtain:

0 () = 0 () +
dd

 () + 
−  0 ()

[ () + ]
2
 0 () +

dd

 () + 


where  =  ( ()  ). Substituting (A.14) yields: 0 ()  1
()+

h
12
00() + 0 ()

i
. Since 12  0, then

0 () ≥ 0 implies 0 ()  0.
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Supplementary Appendix for
“Post-Match Investment and Dynamic Sorting between Capital and Labor”

Shouyong Shi

2018

C. Procedures of Calibration and Computation

The model is calibrated at the monthly frequency. The discount rate  is determined by the

target, (1+)3 = 10125. The target  = 055 implies
∗()

̃(∗())
=  for all . The condition,

1 (
∗ ()  ) = 0, implies 0 = 



³
∗()


´1−
, which determines 0 under the normalization

∗ () = 100. The calibration target on home production yields  = 029∗ ().

The monthly transition rate from employment to unemployment is  = 0026, which

is taken from the Current Population Survey (CPS). The average unemployment rate is

targeted to 0065. Let ̂ be the skill of workers at this average ; i.e., (̂) = 0065. For

such workers, the job-finding rate the steady state yields (̂) = ( 1

(̂)
− 1) = 0374 and

1

(̂)
≡ d ln (̂)

d ln ((̂))
= 1 − (̂). The targets 1

(̂)
= 039 yields  = 05. Since this step

has used two targets,
³
(̂) (̂)

´
, and determined only one parameter, , it leaves the

target on  to be used later. With the target (̂) = 072, the matching function yields

0 = (̂)
h
−(̂)− 1

i1
= 029.

The remaining parameters, (1 0 1), minimize the distance between the model and

three targets: the unemployment rates at ,  and  . The distance measure is:

 (%) ≡
h
1 [ ()− 015]2 + 2 [ ()− 1]2

+3 [ ()− 1]2
i12 × 100%

where (1 2 3) are weights on the targets, with 1+2+3 = 1. I use 1 = 05, 2 = 02

and 3 = 03. The target on the unemployment rate at  is given relatively higher weights

in order for the average unemployment rate to be close to the target 0065.

To compute the social optimum, I substitute 1 ( ) = 0 ( ( )) from (3.1) into

(A.6) to obtain:

∆ ( ) =
 ( )−  +  ()  () + [0 ()  −  ()]

 +  + 
 (C.1)
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where  =  ( ) is given by (3.7). Substituting this expression for ∆ and 1 ( ) =

0 ( ( )), I rewrite (3.8) and (3.9) as

0 ( ( )) = 0 ()
 ()


(C.2)

 ( )−  +  ()  () + [0 ()  −  ()]

 +  + 
=  () 0 ()  (C.3)

These two equations determine ( ). In fact,  can be solved first as a function of  from

(C.2) and then substituted into (C.3) to solve .25 Once ( ) are solved, I can compute

{ ()   ()}≥0 by (3.6) and compute the distribution of workers and capital according to
section 4.

25Equations (C.2) and (C.3) can also be used to prove Proposition 3.3. Doing so generates expressions for

0 () and 0 () that are equivalent to those in (A.3), with 1 and 11 being obtained from differentiating

(A.6) with respect to .
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